Araştırma Makalesi
BibTex RIS Kaynak Göster

Puzzle-Based Learning

Yıl 2013, Sayı: 26, 48 - 63, 30.01.2014

Öz

Problem solving is one of the most important parts of Mathematics and other disciplines. Most of the students generally cannot learn how to think in problem solving process. All through their education life students are restricted with the problems they are required to solve at the end of the learning domain, theme. Puzzlebased learning is a new kind of teaching-learning methodology focusing on the development of the problem solving skills. Puzzle-based learning is newly-generated model of teaching critical thinking and problem solving. The pedagogical objective of puzzle-based learning is to increase mathematical awareness and general problem solving skills by using educational, participatory, reasoning booster and enjoyable puzzles. The ultimate objective of the of the puzzle-based learning is laying a foundation for the learners to let them be an effective problem solvers in real life. In Australia, The United States and in the other countries, such as Qatar, the puzzle-based approach has been administered to the students ranging from 15 to 380 and positive findings have been reached. The purpose of the study is to create awareness of the theoretical foundations of this approach, relevant practice, the puzzles used in this approach and the qualities of the puzzles by making a literature review on puzzle –based learning. The course, applied to the learners in early years of higher education, can be applied to the high school, secondary school and eventually primary school learners in coming years.

Kaynakça

  • Badger, M., Sangwin, C.J.& Medina-Ventura, E., Thomas,C.R.(2012). A guide to puzzle-based learning in STEM subjects. http://www.heacademy.ac.uk/assets/documents
  • Cha, S., Kown, D., & LEE, W. (2007). Using Puzzles: Problem-Solving and Abstraction. Proceedings ACM of SIGITE, pp. 135-140.
  • The CATEI Process. (2007). Course and Teaching Evaluation and Improvement:. Sydney, NSW, Australia: New South Wales, Davidson, J. E., Deuser, R., & Sternberg, R. J. (1994). The role of metacognition in problem solving. In J. Metcalfe & A. P. Shimamura (Eds.), Metacognition: Knowing about knowing (pp. 207-226). Cambridge, MA: MIT.
  • De Bono, E. (1967). New Think: The Use of Lateral Thinking, London: Jonathan Cape.
  • Falkner, N., Sooriamurthi, R., & Michalewicz, Z. (2010). Puzzle-Based Learning for Engineering and Computer Science. Computer, April, pp. 21-28.
  • Fisher, A. (2001). Critical Thinking: An Introduction, Cambridge, UK: Cambridge University Press.
  • Gardner, M. (1961). Entertaining Mathematical Puzzles, New York: Dover Publications.
  • Gnadig, P., Honyek, G. & Riley, K. F. (2001). 200 Puzzling Physics Problems, Cambridge University
  • Hadley, j. & Singmaster, D. (1992). Problems to sharpen the young, The Mathematical Gazette 76 (475), 102–126.
  • Hidetoshi, F. & Rothman, R. (2008). Sacred Mathematics: Japanese Temple Geometry, Princeton University Press.
  • Ittenbach, R.F. & Harrison, P.L. (1990). Predicting ego-strength from problemsolving ability of college student. Measurement & Evaluation in Counseling & Development, 23(3), 128-137.
  • Karataş, İ. & Güven, B. (2003a). Problem çözme davranışlarının değerlendirilmesinde kullanılan yöntemler: Klinik mülakatın potansiyeli. İlköğretim-Online, 2(2).
  • Karataş, İ. & Güven, B. (2003b). 8. Sınıf öğrencilerinin problem çözme sürecince kullandığı bilgi türlerinin analizi. Matematikçiler Derneği Bilim Köşesi. www.matder.org.tr .
  • Kawash, J. (2012). Engaging students by intertwining puzzle-based and problem-based learning. In Proceedings of the 13th annual conference on Information technology education (pp. 227-232).
  • Kılıç, D. & Samancı, O. (2005). İlköğretim okullarında okutulan sosyal bilgiler dersinde problem çözme yönteminin kullanılışı. Kazım Karabekir Eğitim Fakültesi Dergisi, 11, 100–112.
  • Levitin, A. & Papalaskari, M.A. (2002). Using puzzles in teaching algorithms. Proceedings of ACM SIGCSE, pp. 292- 296.
  • Merrick, K. E. (2010). An empirical evaluation of puzzle-based learning as an interest approach for teaching introductory computer science. Education, IEEE Transactions on, 53(4), 677-680.
  • Michalewicz, Z. & Michalewicz, M. (2007). Puzzle Based Learning. Proceedings of the 2007 AaeE Conference, pp. 1- 8.
  • Michalewicz, Z. & Michalewicz, M. (2008. Puzzle-based Learning: Introduction to critical thinking, mathematics, and problem solving, Hybrid Publishers.
  • Özen, G. (2004). Dağcılık eğitiminin problem çözme becerisi üzerine etkisinin incelenmesi. Yayınlanmamış yüksek lisans tezi, Bolu Abant İzzet Baysal Üniversitesi Sosyal Bilimler Enstitüsü.
  • Parhami, B. (2009). Puzzling Problems in Computer Engineering. Computer, March, pp. 26-29.
  • Polya, G. (1945). How to Solve It: A New Aspect of Mathematical Method, Princeton: Princeton University Press.
  • Poundstone, W. (2000). How Would You Move Mount Fuji? Microsoft’s Cult of the Puzzle—How the World’s Smartest Companies Select the Most Creative Thinkers, Little Brown and Company.
  • Rao, M. R. K. Krishna (2006). Storytelling and Puzzles in a Software Engineering Course. Proceedings of ACM SIGCSE, pp. 418-422
  • Rubinstein, J., Dhoble, A., & Ferenchick, G. (2009). Puzzle based teaching versus traditional instruction in electrocardiogram interpretation for medical students–a pilot study. BMC medical education, 9(1), 4.
  • Shilov, N. V. & Yi, K. (2001). Puzzles for Learning Model Checking, Model Checking for Programming Puzzles, Puzzles for Testing Model Checkers. Electronic. Notes on Theoretical Computer Science, 43, 34-49. Weinstein, L. & Adam, J. A. (2008). Guesstimation: Solving the World’s Problems on the Back of a Cocktail Napkin, Princeton University Press. Zadnik, M.G. and Loss, R.D. (1995). Developing numerical problem-solving skills through estimations of quantities in familiar contexts. Australian Science Teachers Journal, 41(1), 15 19.
  • Zeitz, P. (2007). The Art and Craft of Problem Solving, second edn, Wiley.

Bulmaca Temelli Öğrenme

Yıl 2013, Sayı: 26, 48 - 63, 30.01.2014

Öz

Problem çözme matematiğin ve diğer disiplinlerin en önemli yapılarından biridir. Çoğu öğrenci genellikle problem çözme aşamasında nasıl düşüneceğini öğrenememektedir. Çocuklar çoğunlukla ilkokulda tema, ortaokul ve lisede ünitelendirilmiş öğrenme alanlarının sonunda ve ders kitaplarında belirlenen problemleri çözmekle sınırlandırılmaktadır. Bulmaca temelli öğrenme problem çözme becerilerinin gelişimine odaklanan bir öğrenme öğretme metodolojisidir. Bulmaca temelli öğrenme eleştirel düşünme ve problem çözme öğretiminde kullanılan bir modeldir. Bulmaca temelli öğrenmenin pedagojik amacı, öğrencilerin matematiksel farkındalığını ve genel problem çözme becerilerini; eğitsel, katılımcı, muhakeme gücünü artıran ve bununla
beraber eğlenmelerini sağlayan bulmacaları kullanarak arttırmaktır. Bulmaca temelli öğrenmenin nihai amacı öğrenenlerin reel dünyada efektif problem çözücüler olması için temel oluşturmaktır. Bulmaca temelli öğrenme yaklaşımı Avustralya, ABD ve Katar gibi ülkelerde sayıları 15 ile 380 arasında değişen öğrencilere kurs olarak tatbik edilmiş ve olumlu bulgulara ulaşılmıştır. Bu ülkelerde, farklı bölümlerde öğrenimlerine devam eden üniversite öğrencilerine uygulanan kursların sonuçları olumludur. Bu kurslarda bulmacalar ders içeriğinin içerisinde ya da bağımsız bulmacalar şeklinde tatbik edilmiştir. Bu araştırmanın amacı bulmaca temelli öğrenme ile ilgili literatür taraması yaparak bu yaklaşımın kuramsal temellerini, ilgili pratiği, yaklaşımda kullanılan bulmacaları ortaya koymak ve bu bulmacaların nitelikleri konusunda farkındalık oluşturmaktır. Şu an Avustralya, ABD ve Katar gibi ülkelerin yüksek öğrenimde ilk yıllarını geçiren öğrenenlere uygulanan bu kurs önümüzdeki dönemde lise, ortaokul ve en nihayetinde ilkokul öğrenenlerine uygulanabilir.

Kaynakça

  • Badger, M., Sangwin, C.J.& Medina-Ventura, E., Thomas,C.R.(2012). A guide to puzzle-based learning in STEM subjects. http://www.heacademy.ac.uk/assets/documents
  • Cha, S., Kown, D., & LEE, W. (2007). Using Puzzles: Problem-Solving and Abstraction. Proceedings ACM of SIGITE, pp. 135-140.
  • The CATEI Process. (2007). Course and Teaching Evaluation and Improvement:. Sydney, NSW, Australia: New South Wales, Davidson, J. E., Deuser, R., & Sternberg, R. J. (1994). The role of metacognition in problem solving. In J. Metcalfe & A. P. Shimamura (Eds.), Metacognition: Knowing about knowing (pp. 207-226). Cambridge, MA: MIT.
  • De Bono, E. (1967). New Think: The Use of Lateral Thinking, London: Jonathan Cape.
  • Falkner, N., Sooriamurthi, R., & Michalewicz, Z. (2010). Puzzle-Based Learning for Engineering and Computer Science. Computer, April, pp. 21-28.
  • Fisher, A. (2001). Critical Thinking: An Introduction, Cambridge, UK: Cambridge University Press.
  • Gardner, M. (1961). Entertaining Mathematical Puzzles, New York: Dover Publications.
  • Gnadig, P., Honyek, G. & Riley, K. F. (2001). 200 Puzzling Physics Problems, Cambridge University
  • Hadley, j. & Singmaster, D. (1992). Problems to sharpen the young, The Mathematical Gazette 76 (475), 102–126.
  • Hidetoshi, F. & Rothman, R. (2008). Sacred Mathematics: Japanese Temple Geometry, Princeton University Press.
  • Ittenbach, R.F. & Harrison, P.L. (1990). Predicting ego-strength from problemsolving ability of college student. Measurement & Evaluation in Counseling & Development, 23(3), 128-137.
  • Karataş, İ. & Güven, B. (2003a). Problem çözme davranışlarının değerlendirilmesinde kullanılan yöntemler: Klinik mülakatın potansiyeli. İlköğretim-Online, 2(2).
  • Karataş, İ. & Güven, B. (2003b). 8. Sınıf öğrencilerinin problem çözme sürecince kullandığı bilgi türlerinin analizi. Matematikçiler Derneği Bilim Köşesi. www.matder.org.tr .
  • Kawash, J. (2012). Engaging students by intertwining puzzle-based and problem-based learning. In Proceedings of the 13th annual conference on Information technology education (pp. 227-232).
  • Kılıç, D. & Samancı, O. (2005). İlköğretim okullarında okutulan sosyal bilgiler dersinde problem çözme yönteminin kullanılışı. Kazım Karabekir Eğitim Fakültesi Dergisi, 11, 100–112.
  • Levitin, A. & Papalaskari, M.A. (2002). Using puzzles in teaching algorithms. Proceedings of ACM SIGCSE, pp. 292- 296.
  • Merrick, K. E. (2010). An empirical evaluation of puzzle-based learning as an interest approach for teaching introductory computer science. Education, IEEE Transactions on, 53(4), 677-680.
  • Michalewicz, Z. & Michalewicz, M. (2007). Puzzle Based Learning. Proceedings of the 2007 AaeE Conference, pp. 1- 8.
  • Michalewicz, Z. & Michalewicz, M. (2008. Puzzle-based Learning: Introduction to critical thinking, mathematics, and problem solving, Hybrid Publishers.
  • Özen, G. (2004). Dağcılık eğitiminin problem çözme becerisi üzerine etkisinin incelenmesi. Yayınlanmamış yüksek lisans tezi, Bolu Abant İzzet Baysal Üniversitesi Sosyal Bilimler Enstitüsü.
  • Parhami, B. (2009). Puzzling Problems in Computer Engineering. Computer, March, pp. 26-29.
  • Polya, G. (1945). How to Solve It: A New Aspect of Mathematical Method, Princeton: Princeton University Press.
  • Poundstone, W. (2000). How Would You Move Mount Fuji? Microsoft’s Cult of the Puzzle—How the World’s Smartest Companies Select the Most Creative Thinkers, Little Brown and Company.
  • Rao, M. R. K. Krishna (2006). Storytelling and Puzzles in a Software Engineering Course. Proceedings of ACM SIGCSE, pp. 418-422
  • Rubinstein, J., Dhoble, A., & Ferenchick, G. (2009). Puzzle based teaching versus traditional instruction in electrocardiogram interpretation for medical students–a pilot study. BMC medical education, 9(1), 4.
  • Shilov, N. V. & Yi, K. (2001). Puzzles for Learning Model Checking, Model Checking for Programming Puzzles, Puzzles for Testing Model Checkers. Electronic. Notes on Theoretical Computer Science, 43, 34-49. Weinstein, L. & Adam, J. A. (2008). Guesstimation: Solving the World’s Problems on the Back of a Cocktail Napkin, Princeton University Press. Zadnik, M.G. and Loss, R.D. (1995). Developing numerical problem-solving skills through estimations of quantities in familiar contexts. Australian Science Teachers Journal, 41(1), 15 19.
  • Zeitz, P. (2007). The Art and Craft of Problem Solving, second edn, Wiley.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Ergün Öztürk

Seçkin Gök Bu kişi benim

Sevil Takımcıgil Bu kişi benim

Yayımlanma Tarihi 30 Ocak 2014
Gönderilme Tarihi 30 Ocak 2014
Yayımlandığı Sayı Yıl 2013 Sayı: 26

Kaynak Göster

APA Öztürk, E., Gök, S., & Takımcıgil, S. (2014). Bulmaca Temelli Öğrenme. Sakarya Üniversitesi Eğitim Fakültesi Dergisi(26), 48-63.