Kanın damar içinde ya da bir organda pıhtılaşması olan Tromboz’a yol açan hastalıklarda önemli sağlık sorunları ortaya çıkmakta ve hatta birçok vakada insanlar hayatını kaybedebilmektedir. Tromboz gelişimi multifaktoriyel olup,çok sayıda edinsel ve kalıtsal faktörün değişik mekanizmalarla tromboz oluşumuna neden olduğu bilinmekte ise de tromboza yatkınlık olarak bilinen Trombofili tanısının konmasında önemli zorluklar yaşanmaktadır. Bu kapsamda,
geleneksel sınıflandırma yöntemlerinin klinik, laboratuvar ve genetik tetkiklere ait verilerin değerlendirilmesindeki başarımları ise çoğunlukla sınırlı kalabilmektedir. Bu çalışmada, Trombofili hastalığı ile genetik bozukluklar arasındaki ilişkinin tespit edilebilmesi için Adaptif Ağ Tabanlı Bulanık Mantık Çıkarım Sistemi (ANFIS) kullanılmış ve elde edilen sonuçlar literatürde yaygın olarak kullanılan bazı sınıflandırma algoritmalarına ait sonuçlarla karşılaştırılmıştır. Elde edilen sonuçlardan, ANFIS ile elde edilen sonuçların daha başarılı olduğu görülmüştür.
Thrombosis is a condition involving the clotting of bloods in the veins or in an organ, whereas thrombophilia is a term used to describe a predisposition for thrombosis. In diseases causing major health problems that are related to thrombosis, people may even lose their lives in many cases. Thrombosis is multifactorial, it is known to cause a number of acquired and hereditary factors which lead to thrombosis formation through various mechanisms. Therefore, many difficulties are experienced in the diagnosis of thrombophilia. In this context, traditional statistical methods are often inadequate for the evaluation of clinical and laboratory data. In this study, in order to determine the relationship between genetic disorders and thrombophilic disease, the Adaptive Neuro-Fuzzy Inference System (ANFIS) is used and our results are compared to the results of some of the commonly-used classification algorithms. Simulation results showed that the results from using ANFIS were more successful than those obtained from considered classification algorithms.
Birincil Dil | Türkçe |
---|---|
Konular | Mühendislik |
Bölüm | Uygulama Makalesi |
Yazarlar | |
Yayımlanma Tarihi | 1 Nisan 2016 |
Gönderilme Tarihi | 29 Haziran 2015 |
Kabul Tarihi | 29 Ağustos 2015 |
Yayımlandığı Sayı | Yıl 2016 Cilt: 20 Sayı: 1 |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.