Araştırma Makalesi
BibTex RIS Kaynak Göster

Orta frekans indüksiyon yöntemi ile nano-metal ve nano-metal oksit partikül sentezinin incelenmesi

Yıl 2016, Cilt: 20 Sayı: 2, 371 - 381, 01.08.2016
https://doi.org/10.16984/saufenbilder.60115

Öz

Bu çalışmada, gümüş (Ag), demir oksit (Fe2O3) ve titanyum dioksit (TiO2) partiküllerinin nano- boyutta üretimleri için gerekli şartlar, orta frekanslı indüksiyon partikül üretim sisteminde incelenmiştir. Partikül üretim sistemi; orta frekanslı indüksiyon fırını ile yüksek frekans ultrasonik atomizerin birleştirilmesi ile oluşturulmuştur. Bahsi geçen nano-partiküllerin üretimi 0,1 M ve 0,01 M konsantrasyonların da AgNO3, FeCl3.6H2OTitanyum tetra izopropoksit (TTIP) başlangıç malzemeleri kullanılarak gerçekleştirilmiştir. Deneyler, sabit 800 ºC reaksiyon sıcaklığı, 1.0 L/dk. taşıyıcı gaz debisi ve 15 dk. deney süresi şartlarında yapılmıştır. XRD ve SEM kullanılarak karakterize edilen nano-partiküllerin safsızlık içermediği ve 50 nm ile 400 nm arasında değişen boyutlarda oldukları görülmüştür.

Kaynakça

  • R.W. Siegel, “Nanophase Materials: Synthesis, Structure, and Properties’’ in Physics of New Materials F.E. Fujita (Eds.), Springer-Verlag, Berlin Heidelberg 1994, 66-106
  • J. A. Blackman, “Metallic Nanoparticles” inHandbook of Metal Physics, Elsevier B.V, 2009
  • N. G. Semaltianos, S. Logothetidis, N. Frangis, I. Tsiaoussis, W. Perrie, G. Dearden, and K. G. Watkins, (2010) ‘’Laser ablation in water: A route to synthesize nanoparticles of titanium monoxide’’, Chem. Phys. Lett., 113–116.
  • Y. Cheng, S. Choi, and T. Watanabe, (2013) “Effect of nucleation temperature and heat transfer on synthesis of Ti and Fe boride nanoparticles in RF thermal plasmas,” Powder Technol., vol. 246, 210–217.
  • K. K. Akurati, A. Vital, G. Fortunato, R. Hany, F. Nueesch, and T. Graule, (2007) ‘’Flame synthesis of TiO2 nanoparticles with high photocatalytic activity’’, Solid State Sci., 247–257.
  • R. Doong, P.-Y. Chang, and C.-H. Huang, (2009) ‘’Microstructural and photocatalytic properties of sol–gel-derived vanadium-doped mesoporous titanium dioxide nanoparticles’’ J. Non. Cryst. Solids, vol. 355, 2302–2308.
  • G. Akgul, F. A. Akgul, K. Attenkofer, and M. Winterer, (2013) ‘’Structural properties of zinc oxide and titanium dioxide nanoparticles prepared by chemical vapor synthesis’’, J. Alloys Compd., vol. 554, 177–181.
  • M. I. Baraton, ‘’Synthesis functionalization and surface treatment of nanoparticles’’, American Scientific Publishers, California 2003
  • W.-N. Wang, I. W. Lenggoro, Y. Terashi, T. O. Kim, and K. Okuyama, (2005) ‘’One-step synthesis of titanium oxide nanoparticles by spray pyrolysis of organic precursors’’, Mater. Sci. Eng. B, vol. 123, no. 3, 194–202.
  • M. Ahamed, M. S. Alsalhi, and M. K. J. Siddiqui, (2010), ‘’Silver nanoparticle applications and human health’’, Clin. Chim. Acta., vol. 411, no. 23–241841–8.
  • A. Ravindran, P. Chandran, and S. S. Khan, (2013)‘’Biofunctionalized silver nanoparticles: advances and prospects’’. Colloids Surf. B. Biointerfaces, vol. 105, 342–52.
  • Y. Lan, Y. Lu, and Z. Ren, (2013) ‘’Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications’’, Nano Energy, vol. 2, 1031–1045.
  • J. Yang, X. Zhang, C. Wang, P. Sun, L. Wang, B. Xia, and Y. Liu, (2012) ‘’Solar photocatalytic activities of porous Nb-doped TiO2 microspheres prepared by ultrasonic spray pyrolysis’’, Solid State Sci., 14, 139–144.
  • M. V Liga, E. L. Bryant, V. L. Colvin, and Q. Li, (2011) ‘’Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment’’, Water Res., 45, 535–44.
  • H. Shi, R. Magaye, V. Castranova, and J. Zhao, (2013) ‘’Titanium dioxide nanoparticles: a review of current toxicological data’’, Part. Fibre Toxicol 10 15.
  • A. K. Gupta , M. Gupta, (2005) ‘’Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications’’, Biomaterials 26 3995–4021.
  • Z. Cheng, A. L. Kuan Tan, Y. Tao, D. Shan, K. E. Ting, and X. J. Yin, (2012) ‘’Synthesis and Characterization of Iron Oxide Nanoparticles and Applications in the Removal of Heavy Metals from Industrial Wastewater’’, International Journal of Photoenergy.
  • M. Mohapatra, S. Anand, (2010) ‘’Synthesis and applications of nano-structured iron oxides/hydroxides – a review’’, Science and Technology 127-146
  • Schwertmann U, Cornell RM., ‘’The Iron Oxides’’ in Iron oxides in the laboratory: preparation and characterization. Weinheim, Cambridge VCH 1991, 5-18
  • P. Moravec, J. Smolík, and V. V. Levdansky, (2001) ‘’Preparation of TiO2 fine particles by thermal decomposition of titanium tetraisopropoxide vapor’’, J. Mater. Sci. Lett., 2033–2037.
  • K. Y. Jung, J. H. Lee, H. Y. Koo, Y. C. Kang, and S. Bin Park, (2007) ‘’Preparation of solid nickel nanoparticles by large-scale spray pyrolysis of Ni(NO3)2·6H2O precursor: Effect of temperature and nickel acetate on the particle morphology’’, Mater. Sci. Eng. B 10–19,
  • D. Majumdar, T. A. Shefelbine, T. T. Kodasa, (1996). ‘’Copper (I) oxide powder generation by spray pyrolysis’’, J. Mater. Res.
  • B. Ebin, S. Gürmen, and G. Lindbergh, (2014) ‘’Preparation and electrochemical properties of spinel LiFexCuyMn1.2O4 by ultrasonic spray pyrolysis’’, Ceram. Int., 1019–1027.
  • X. Shi, S. Wang, X. Duan, and Q. Zhang, (2008) ‘’Synthesis of nano Ag powder by template and spray pyrolysis technology’’, Mater. Chem. Phys., 1110–1113.
  • L. Zhang, M. . Ranade, and J. . Gentry, (2002) ‘’Synthesis of nanophase silver particles using an aerosol reactor’’, J. Aerosol Sci., 1559–1575.
  • K. C. Pingali, D. A. Rockstraw, and S. Deng , (2005) ‘’Silver Nanoparticles from Ultrasonic Spray Pyrolysis of Aqueous Silver Nitrate’’, Aerosol Sci., and Technology 1010–1014.

Investigation of nano metal and metal oxide particles synthesis by using medium frequency-induction method

Yıl 2016, Cilt: 20 Sayı: 2, 371 - 381, 01.08.2016
https://doi.org/10.16984/saufenbilder.60115

Öz

Synthesis of Ag, Fe2O3 and TiO2 was investigated in medium frequency induction system to determine ideal conditions for the particle production with desired size. A high frequency ultrasonic generator was attached to induction furnace to synthesize particles from solutions of AgNO3, FeCl3, titanium tetra iso-propoxide (TTIP). Experiments were carried out under concentrations of 0.1 M, 0.01 M at constant parameters; 15 min. time, 800 ºC temperature, 1.0 L/min. flow rate. X-ray diffraction (XRD) studies confirmed the particle formation without contamination. Scanning electron microscopy (SEM) examinations revealed that size of particles were in the range of 50 nm to 400 nm.

Kaynakça

  • R.W. Siegel, “Nanophase Materials: Synthesis, Structure, and Properties’’ in Physics of New Materials F.E. Fujita (Eds.), Springer-Verlag, Berlin Heidelberg 1994, 66-106
  • J. A. Blackman, “Metallic Nanoparticles” inHandbook of Metal Physics, Elsevier B.V, 2009
  • N. G. Semaltianos, S. Logothetidis, N. Frangis, I. Tsiaoussis, W. Perrie, G. Dearden, and K. G. Watkins, (2010) ‘’Laser ablation in water: A route to synthesize nanoparticles of titanium monoxide’’, Chem. Phys. Lett., 113–116.
  • Y. Cheng, S. Choi, and T. Watanabe, (2013) “Effect of nucleation temperature and heat transfer on synthesis of Ti and Fe boride nanoparticles in RF thermal plasmas,” Powder Technol., vol. 246, 210–217.
  • K. K. Akurati, A. Vital, G. Fortunato, R. Hany, F. Nueesch, and T. Graule, (2007) ‘’Flame synthesis of TiO2 nanoparticles with high photocatalytic activity’’, Solid State Sci., 247–257.
  • R. Doong, P.-Y. Chang, and C.-H. Huang, (2009) ‘’Microstructural and photocatalytic properties of sol–gel-derived vanadium-doped mesoporous titanium dioxide nanoparticles’’ J. Non. Cryst. Solids, vol. 355, 2302–2308.
  • G. Akgul, F. A. Akgul, K. Attenkofer, and M. Winterer, (2013) ‘’Structural properties of zinc oxide and titanium dioxide nanoparticles prepared by chemical vapor synthesis’’, J. Alloys Compd., vol. 554, 177–181.
  • M. I. Baraton, ‘’Synthesis functionalization and surface treatment of nanoparticles’’, American Scientific Publishers, California 2003
  • W.-N. Wang, I. W. Lenggoro, Y. Terashi, T. O. Kim, and K. Okuyama, (2005) ‘’One-step synthesis of titanium oxide nanoparticles by spray pyrolysis of organic precursors’’, Mater. Sci. Eng. B, vol. 123, no. 3, 194–202.
  • M. Ahamed, M. S. Alsalhi, and M. K. J. Siddiqui, (2010), ‘’Silver nanoparticle applications and human health’’, Clin. Chim. Acta., vol. 411, no. 23–241841–8.
  • A. Ravindran, P. Chandran, and S. S. Khan, (2013)‘’Biofunctionalized silver nanoparticles: advances and prospects’’. Colloids Surf. B. Biointerfaces, vol. 105, 342–52.
  • Y. Lan, Y. Lu, and Z. Ren, (2013) ‘’Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications’’, Nano Energy, vol. 2, 1031–1045.
  • J. Yang, X. Zhang, C. Wang, P. Sun, L. Wang, B. Xia, and Y. Liu, (2012) ‘’Solar photocatalytic activities of porous Nb-doped TiO2 microspheres prepared by ultrasonic spray pyrolysis’’, Solid State Sci., 14, 139–144.
  • M. V Liga, E. L. Bryant, V. L. Colvin, and Q. Li, (2011) ‘’Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment’’, Water Res., 45, 535–44.
  • H. Shi, R. Magaye, V. Castranova, and J. Zhao, (2013) ‘’Titanium dioxide nanoparticles: a review of current toxicological data’’, Part. Fibre Toxicol 10 15.
  • A. K. Gupta , M. Gupta, (2005) ‘’Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications’’, Biomaterials 26 3995–4021.
  • Z. Cheng, A. L. Kuan Tan, Y. Tao, D. Shan, K. E. Ting, and X. J. Yin, (2012) ‘’Synthesis and Characterization of Iron Oxide Nanoparticles and Applications in the Removal of Heavy Metals from Industrial Wastewater’’, International Journal of Photoenergy.
  • M. Mohapatra, S. Anand, (2010) ‘’Synthesis and applications of nano-structured iron oxides/hydroxides – a review’’, Science and Technology 127-146
  • Schwertmann U, Cornell RM., ‘’The Iron Oxides’’ in Iron oxides in the laboratory: preparation and characterization. Weinheim, Cambridge VCH 1991, 5-18
  • P. Moravec, J. Smolík, and V. V. Levdansky, (2001) ‘’Preparation of TiO2 fine particles by thermal decomposition of titanium tetraisopropoxide vapor’’, J. Mater. Sci. Lett., 2033–2037.
  • K. Y. Jung, J. H. Lee, H. Y. Koo, Y. C. Kang, and S. Bin Park, (2007) ‘’Preparation of solid nickel nanoparticles by large-scale spray pyrolysis of Ni(NO3)2·6H2O precursor: Effect of temperature and nickel acetate on the particle morphology’’, Mater. Sci. Eng. B 10–19,
  • D. Majumdar, T. A. Shefelbine, T. T. Kodasa, (1996). ‘’Copper (I) oxide powder generation by spray pyrolysis’’, J. Mater. Res.
  • B. Ebin, S. Gürmen, and G. Lindbergh, (2014) ‘’Preparation and electrochemical properties of spinel LiFexCuyMn1.2O4 by ultrasonic spray pyrolysis’’, Ceram. Int., 1019–1027.
  • X. Shi, S. Wang, X. Duan, and Q. Zhang, (2008) ‘’Synthesis of nano Ag powder by template and spray pyrolysis technology’’, Mater. Chem. Phys., 1110–1113.
  • L. Zhang, M. . Ranade, and J. . Gentry, (2002) ‘’Synthesis of nanophase silver particles using an aerosol reactor’’, J. Aerosol Sci., 1559–1575.
  • K. C. Pingali, D. A. Rockstraw, and S. Deng , (2005) ‘’Silver Nanoparticles from Ultrasonic Spray Pyrolysis of Aqueous Silver Nitrate’’, Aerosol Sci., and Technology 1010–1014.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Levent Kartal

Yasin Kılıç Bu kişi benim

Güldem Kartal Şireli

Servet Timur

Yayımlanma Tarihi 1 Ağustos 2016
Gönderilme Tarihi 13 Ekim 2015
Kabul Tarihi 8 Haziran 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 20 Sayı: 2

Kaynak Göster

APA Kartal, L., Kılıç, Y., Kartal Şireli, G., Timur, S. (2016). Investigation of nano metal and metal oxide particles synthesis by using medium frequency-induction method. Sakarya University Journal of Science, 20(2), 371-381. https://doi.org/10.16984/saufenbilder.60115
AMA Kartal L, Kılıç Y, Kartal Şireli G, Timur S. Investigation of nano metal and metal oxide particles synthesis by using medium frequency-induction method. SAUJS. Ağustos 2016;20(2):371-381. doi:10.16984/saufenbilder.60115
Chicago Kartal, Levent, Yasin Kılıç, Güldem Kartal Şireli, ve Servet Timur. “Investigation of Nano Metal and Metal Oxide Particles Synthesis by Using Medium Frequency-Induction Method”. Sakarya University Journal of Science 20, sy. 2 (Ağustos 2016): 371-81. https://doi.org/10.16984/saufenbilder.60115.
EndNote Kartal L, Kılıç Y, Kartal Şireli G, Timur S (01 Ağustos 2016) Investigation of nano metal and metal oxide particles synthesis by using medium frequency-induction method. Sakarya University Journal of Science 20 2 371–381.
IEEE L. Kartal, Y. Kılıç, G. Kartal Şireli, ve S. Timur, “Investigation of nano metal and metal oxide particles synthesis by using medium frequency-induction method”, SAUJS, c. 20, sy. 2, ss. 371–381, 2016, doi: 10.16984/saufenbilder.60115.
ISNAD Kartal, Levent vd. “Investigation of Nano Metal and Metal Oxide Particles Synthesis by Using Medium Frequency-Induction Method”. Sakarya University Journal of Science 20/2 (Ağustos 2016), 371-381. https://doi.org/10.16984/saufenbilder.60115.
JAMA Kartal L, Kılıç Y, Kartal Şireli G, Timur S. Investigation of nano metal and metal oxide particles synthesis by using medium frequency-induction method. SAUJS. 2016;20:371–381.
MLA Kartal, Levent vd. “Investigation of Nano Metal and Metal Oxide Particles Synthesis by Using Medium Frequency-Induction Method”. Sakarya University Journal of Science, c. 20, sy. 2, 2016, ss. 371-8, doi:10.16984/saufenbilder.60115.
Vancouver Kartal L, Kılıç Y, Kartal Şireli G, Timur S. Investigation of nano metal and metal oxide particles synthesis by using medium frequency-induction method. SAUJS. 2016;20(2):371-8.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.