The Effect of element additions on the microstructure and the mechanical properties of cobalt based superalloys produced via powder metallurgy technique
Yıl 2017,
Cilt: 21 Sayı: 2, 223 - 231, 01.04.2017
Özgür Özgün
,
Ömer Faruk Akbulut
Öz
In this
study, the effect of Fe and B elements on the microstructure and mechanical
properties of Stellite 6 superalloy materials produced from elemental powders
by powder metallurgy (P/M) technique was investigated. Powder mixtures
contained different Fe and B content were prepared from high purity elemental
powders. The prepared powder mixtures
were shaped by P/M method and then sintered at various temperatures. The
success of sintering operations was determined by density measurements.
Microstructural characterization was carried out with X-ray diffraction
analysis (XRD), scanning electron microscope (SEM) and energy dispersive
spectrometry (EDS). Microhardness measurements were conducted for to
characterize mechanical properties. Due to large particle size of the used Cr
powder coarse carbides formed in the microstructure of Stellite 6 samples.
Relative density values increased slightly with B addition. Relative density
was increased dramatically by the addition of Fe element with B.
Kaynakça
- [1] C. D. Opris, R. Liu, M. X. Yao ve X. J. Wu, “Development of Stellite alloy composites with sintering/HIPing technique for wear-resistant applications”, Mater. Design, cilt 28, s. 581–591, 2007.
- [2] C.T. Sıms, N. S. Stoloff ve W. C. Hagel, “Superalloys II”, Wiley-Interscience, New York, 1987.
- [3] W. Betteridge, “Cobalt and its alloys”, Chichester Halsted Pres, 1982.
- [4] J. R. Davis, “Nickel, cobalt, and their alloys”, Materials Park (OH): ASM International, 2000.
- [5] V. Kuzucu, M. Ceylan, H. Çelik ve İ. Aksoy, “Microstructure and phase analyses of Stellite 6 plus 6 wt.% Mo alloy”, Journal of Materials Processing Technology, cilt 69, s. 257-263, 1997.
- [6] Ş. Aykut, M. Gölcü, S. Semiz ve H. S. Ergür, “Modeling of cutting forces as function of cutting parameters for face milling of stellite 6 using an artificial neural network”, Journal of Materials Processing Technology, cilt 190, s. 199-203, 2007.
- [7] A. Khoddamzadeh, R. Liu, M. Liang ve Q. Yang, “Wear resistant carbon fiber reinforced Stellite alloy composites”, Mater. Design, cilt 56, s. 487–494, 2014.
- [8] A. Khoddamzadeh, R. Liu, M. Liang ve Q. Yang, “Novel wear-resistant materials – Carbon fiber reinforced low-carbon Stellite alloy composites”, Composites Part A: Applied Science and Manufacturing, cilt 43, s. 344–352, 2012.
- [9] N. S. Mcintyre, D. Zetaruk ve E. V. Murphy, “X-ray photoelectron studies of the aqueous oxidation of Inconel-600 alloy”, J. Electrochem. Soc., cilt 126, s. 750–760, 1979.
- [10] F. Rosalbino ve G. Scavino, “Corrosion behaviour assessment of cast and HIPed Stellite 6 alloy in a chloride-containing environment”, Electrochim. Acta, cilt 111, s. 656-662, 2013.
- [11] V. Kuzucu, M. Ceylan, H. Celik ve I. Aksoy, “An investigation of Stellite-6 alloy containing 5.0 wt.% silicon”, J. Mater. Process. Technol., cilt 79, s. 47–51, 1998.
- [12] R. Ahmed, H. D. V. Lovelock, N. H. Faisal ve S. Davies, “Structure–property relation ships in a CoCrMo alloy at micro and nano-scales”, Tribol. Int., cilt 80, s. 98–114, 2014.
- [13] P. Crook, “Cobalt and cobalt alloys”, ASM Handbook, cilt 2, s. 446-454, 1991.
- [14] D. L. Klarstrom, “Wrought cobalt-base superalloys”, Journal of Materials Engineering and Performance, cilt 2, s. 523-530, 1993.
- [15] P. Crook, “Cobalt-base alloys resist wear, corrosion, and heat,” Advanced Materials & Progress, cilt 145, s. 27-30, 1994.
- [16] J. Campbell, “Castings: The new metallurgy of cast metals”, 2nd edition, Oxford/GB: Elsevier Science & Technology, 2003.
- [17] D. M. Stefanescu, “Science and engineering of casting solidification”, 2nd edition, USA: Springer US, 2009.
- [18] G. L. Erickson, “Polycrystalline cast superalloys”, ASM Handbook: Properties and Selection: Irons, Steels, and High Performance Alloys, cilt 1, s. 1528–1550, 2005.
- [19] H. Yu, R. Ahmed, H. de Villiers Lovelock ve S. Davies, “Tribo-Mechanical Evaluations of Cobalt-Based (Stellite 4) Alloys Manufactured via HIPing and Casting”, Proceedings of the World Congress on Engineering, cilt II, July 2 - 4, 2007, London, U.K.
- [20] D. Klarstrom, P. Crook ve J. Wu, “Metallography and microstructures of cobalt and cobalt alloys”, G.F. Vander Voort (Ed.), ASM Handbook: Metallography and Microstructures, cilt 9, s. 762–774, 2004.
- [21] S. Weber, W. Theisen, F. Castro ve A. Pyzalla, “Influence of gas atmosphere and hard particle addition on the sintering behavior of high alloyed PM cold work tool steels”, Materials Science and Engineering A, cilt 515, s. 175-182, 2009.
- [22] R. Ahmed, A. Ashraf, M. Elameen, N. H. Faisal, A. M. El-Sherik, Y. O. Elakwah ve M. F. A. Goosen, “Single asperity nanoscratch behaviour of HIPed and cast Stellite 6 alloys”, Wear, cilt 312, s. 70-82, 2014.
- [23] T. M. Pollock ve S. Tın, “Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties”, Journal of Propulsion and Power, cilt 22, no 2, s. 361–374, 2006.
- [24] N. S. Stoloff, “Wrought and powder metallurgy (P/M) superalloys”, ASM Handbook: Properties and Selection: Irons, Steels, and High Performance Alloys, cilt 1, s. 1478–1527, 2005.
- [25] A. Simchi, “Densification and microstructural evolution during co-sintering of Ni-base superalloy powders”, Metall. Mater. Trans. A, cilt 37, s. 2549–2557, 2006.
- [26] P. J Vervoot, R. Vetter ve J. Duszczyk, “Overview of powder injection molding”, Adv. Perform. Mater., cilt 3, s. 121–151, 1996.
- [27] A. Lal, R. G. Iacocca ve R. M. German, “Microstructural Evolution During The Supersolidus Liquid Phase Sintering of Nickel-Based Prealloyed Powder Mixtures”, Journal of Materials Science, cilt 35, s. 4507–4518, 2000.
- [28] N. S. Babu, S. B. Tıwarı, B. N. Rao, “Development and Validation of Processing Map for Nickel Based Powder Metallurgy Superalloys”, Powder Metallurgy, cilt 49, no 2, s. 160–166, 2006.
- [29] U. Malayoglu ve A. Neville, “Comparing the performance of HIPed and Cast Stellite 6 alloy in liquid–solid slurries”, Wear, cilt 255, s. 181–194, 2003.
- [30] H. Yu, R. Ahmed, H. D. V. Lovelock ve S. Davies, “Influence of manufacturing process and alloying element content on the tribomechanical properties of cobalt-based alloys”, J. Tribol., cilt 131, s. 1–12, 2009.
- [31] H. Ö. Gülsoy, Ö. Özgün ve S. Bilketay, “Powder injection molding of Stellite 6 powder: Sintering, microstructural and mechanical properties”, Materials Science and Engineering A, cilt 651, s. 914-924, 2016.
- [32] W.H. Jiang, X. D. Yao, H. R. Guan ve Z. Q. Hu, “Carbide behaviour during high temperature low cycle fatigue in a cobalt-base superalloy”. Journal of Materials Science, cilt 34, s. 2859-2864, 1999.
- [33] R. Liu, X. S. Qi, S. Kapoor, X. J. Wu, “Effects of chemical composition on solidification, microstructure and hardness of Co-Cr-W-Ni and Co-Cr-Mo-Ni alloy systems”, International Journal of Research and Reviews in Applied Sciences, cilt 5, s. 110–122, 2010.
Toz metalurjisi tekniği ile üretilen kobalt esaslı süperalaşımlarda element ilavelerinin mikroyapı ve mekanik özelliklere etkisi
Yıl 2017,
Cilt: 21 Sayı: 2, 223 - 231, 01.04.2017
Özgür Özgün
,
Ömer Faruk Akbulut
Öz
Bu çalışmada, toz
metalurjisi (T/M) tekniği ile element tozlarından üretilen Stellite 6
süperalaşım malzemelerin mikroyapı ve mekanik özelliklerine Fe ve B
elementlerinin etkisi incelenmiştir. Yüksek saflıktaki element tozlarından
farklı oranlarda Fe ve B içeriğine sahip karışım tozlar hazırlanmıştır.
Hazırlanan karışımlar T/M yöntemi ile şekillendirilip farklı sıcaklıklarda
sinterlenmişlerdir. Sinterleme işlemlerinin başarısı yoğunluk ölçümleri ile
değerlendirilmiştir. Mikroyapısal karakterizasyon X-ışınları analizi (XRD),
taramalı elektron mikroskobu (SEM) incelemeleri ve enerji dağılımı
spektrometresi (EDS) ile gerçekleştirilmiştir. Mekanik özelliklerin
karakterizasyonu için mikrosertlik ölçümleri yapılmıştır. Stellite 6
numunelerinin mikroyapısında, kullanılan Cr tozunun iri boyutlu olması
nedeniyle iri boyutlu karbürlerin oluştuğu tespit edilmiştir. B ilavesi ile
birlikte bağıl yoğunluk değerleri bir miktar artmıştır. B ile birlikte Fe
elementinin ilave edilmesiyle bağıl yoğunluk önemli ölçüde artış göstermiştir.
Kaynakça
- [1] C. D. Opris, R. Liu, M. X. Yao ve X. J. Wu, “Development of Stellite alloy composites with sintering/HIPing technique for wear-resistant applications”, Mater. Design, cilt 28, s. 581–591, 2007.
- [2] C.T. Sıms, N. S. Stoloff ve W. C. Hagel, “Superalloys II”, Wiley-Interscience, New York, 1987.
- [3] W. Betteridge, “Cobalt and its alloys”, Chichester Halsted Pres, 1982.
- [4] J. R. Davis, “Nickel, cobalt, and their alloys”, Materials Park (OH): ASM International, 2000.
- [5] V. Kuzucu, M. Ceylan, H. Çelik ve İ. Aksoy, “Microstructure and phase analyses of Stellite 6 plus 6 wt.% Mo alloy”, Journal of Materials Processing Technology, cilt 69, s. 257-263, 1997.
- [6] Ş. Aykut, M. Gölcü, S. Semiz ve H. S. Ergür, “Modeling of cutting forces as function of cutting parameters for face milling of stellite 6 using an artificial neural network”, Journal of Materials Processing Technology, cilt 190, s. 199-203, 2007.
- [7] A. Khoddamzadeh, R. Liu, M. Liang ve Q. Yang, “Wear resistant carbon fiber reinforced Stellite alloy composites”, Mater. Design, cilt 56, s. 487–494, 2014.
- [8] A. Khoddamzadeh, R. Liu, M. Liang ve Q. Yang, “Novel wear-resistant materials – Carbon fiber reinforced low-carbon Stellite alloy composites”, Composites Part A: Applied Science and Manufacturing, cilt 43, s. 344–352, 2012.
- [9] N. S. Mcintyre, D. Zetaruk ve E. V. Murphy, “X-ray photoelectron studies of the aqueous oxidation of Inconel-600 alloy”, J. Electrochem. Soc., cilt 126, s. 750–760, 1979.
- [10] F. Rosalbino ve G. Scavino, “Corrosion behaviour assessment of cast and HIPed Stellite 6 alloy in a chloride-containing environment”, Electrochim. Acta, cilt 111, s. 656-662, 2013.
- [11] V. Kuzucu, M. Ceylan, H. Celik ve I. Aksoy, “An investigation of Stellite-6 alloy containing 5.0 wt.% silicon”, J. Mater. Process. Technol., cilt 79, s. 47–51, 1998.
- [12] R. Ahmed, H. D. V. Lovelock, N. H. Faisal ve S. Davies, “Structure–property relation ships in a CoCrMo alloy at micro and nano-scales”, Tribol. Int., cilt 80, s. 98–114, 2014.
- [13] P. Crook, “Cobalt and cobalt alloys”, ASM Handbook, cilt 2, s. 446-454, 1991.
- [14] D. L. Klarstrom, “Wrought cobalt-base superalloys”, Journal of Materials Engineering and Performance, cilt 2, s. 523-530, 1993.
- [15] P. Crook, “Cobalt-base alloys resist wear, corrosion, and heat,” Advanced Materials & Progress, cilt 145, s. 27-30, 1994.
- [16] J. Campbell, “Castings: The new metallurgy of cast metals”, 2nd edition, Oxford/GB: Elsevier Science & Technology, 2003.
- [17] D. M. Stefanescu, “Science and engineering of casting solidification”, 2nd edition, USA: Springer US, 2009.
- [18] G. L. Erickson, “Polycrystalline cast superalloys”, ASM Handbook: Properties and Selection: Irons, Steels, and High Performance Alloys, cilt 1, s. 1528–1550, 2005.
- [19] H. Yu, R. Ahmed, H. de Villiers Lovelock ve S. Davies, “Tribo-Mechanical Evaluations of Cobalt-Based (Stellite 4) Alloys Manufactured via HIPing and Casting”, Proceedings of the World Congress on Engineering, cilt II, July 2 - 4, 2007, London, U.K.
- [20] D. Klarstrom, P. Crook ve J. Wu, “Metallography and microstructures of cobalt and cobalt alloys”, G.F. Vander Voort (Ed.), ASM Handbook: Metallography and Microstructures, cilt 9, s. 762–774, 2004.
- [21] S. Weber, W. Theisen, F. Castro ve A. Pyzalla, “Influence of gas atmosphere and hard particle addition on the sintering behavior of high alloyed PM cold work tool steels”, Materials Science and Engineering A, cilt 515, s. 175-182, 2009.
- [22] R. Ahmed, A. Ashraf, M. Elameen, N. H. Faisal, A. M. El-Sherik, Y. O. Elakwah ve M. F. A. Goosen, “Single asperity nanoscratch behaviour of HIPed and cast Stellite 6 alloys”, Wear, cilt 312, s. 70-82, 2014.
- [23] T. M. Pollock ve S. Tın, “Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties”, Journal of Propulsion and Power, cilt 22, no 2, s. 361–374, 2006.
- [24] N. S. Stoloff, “Wrought and powder metallurgy (P/M) superalloys”, ASM Handbook: Properties and Selection: Irons, Steels, and High Performance Alloys, cilt 1, s. 1478–1527, 2005.
- [25] A. Simchi, “Densification and microstructural evolution during co-sintering of Ni-base superalloy powders”, Metall. Mater. Trans. A, cilt 37, s. 2549–2557, 2006.
- [26] P. J Vervoot, R. Vetter ve J. Duszczyk, “Overview of powder injection molding”, Adv. Perform. Mater., cilt 3, s. 121–151, 1996.
- [27] A. Lal, R. G. Iacocca ve R. M. German, “Microstructural Evolution During The Supersolidus Liquid Phase Sintering of Nickel-Based Prealloyed Powder Mixtures”, Journal of Materials Science, cilt 35, s. 4507–4518, 2000.
- [28] N. S. Babu, S. B. Tıwarı, B. N. Rao, “Development and Validation of Processing Map for Nickel Based Powder Metallurgy Superalloys”, Powder Metallurgy, cilt 49, no 2, s. 160–166, 2006.
- [29] U. Malayoglu ve A. Neville, “Comparing the performance of HIPed and Cast Stellite 6 alloy in liquid–solid slurries”, Wear, cilt 255, s. 181–194, 2003.
- [30] H. Yu, R. Ahmed, H. D. V. Lovelock ve S. Davies, “Influence of manufacturing process and alloying element content on the tribomechanical properties of cobalt-based alloys”, J. Tribol., cilt 131, s. 1–12, 2009.
- [31] H. Ö. Gülsoy, Ö. Özgün ve S. Bilketay, “Powder injection molding of Stellite 6 powder: Sintering, microstructural and mechanical properties”, Materials Science and Engineering A, cilt 651, s. 914-924, 2016.
- [32] W.H. Jiang, X. D. Yao, H. R. Guan ve Z. Q. Hu, “Carbide behaviour during high temperature low cycle fatigue in a cobalt-base superalloy”. Journal of Materials Science, cilt 34, s. 2859-2864, 1999.
- [33] R. Liu, X. S. Qi, S. Kapoor, X. J. Wu, “Effects of chemical composition on solidification, microstructure and hardness of Co-Cr-W-Ni and Co-Cr-Mo-Ni alloy systems”, International Journal of Research and Reviews in Applied Sciences, cilt 5, s. 110–122, 2010.