Araştırma Makalesi
BibTex RIS Kaynak Göster

EAO'daki enerji kaynaklarının HAD simülasyonu

Yıl 2017, Cilt: 21 Sayı: 5, 782 - 791, 01.10.2017
https://doi.org/10.16984/saufenbilder.286303

Öz

Bu makalede, Fluent hesaplamalı akışkanlar dinamiği (HAD)
yazılımı kullanılarak, karbon yanması ve elektrik ark ile olan enerji
üretiminin ve ısı geçişinin modellemesi yapılmıştır. Hurdanın EAO içerisinde
brülörle ergitilmesi sırasında gerçekleşen karbon yanması ve elektrik ark
radyasyonu ile oluşan ısı enerjisi ayrıntılı olarak incelenmiştir. Bu nedenle
modelleme çalışmalarında karbon partiküllerin ve elektrottan yayılan
radyasyonun yanma reaksiyonlarından yararlanılmıştır.
Öncelikle partikül yüzeyi ve gaz
reaksiyonları, enjekte edilen karbonun yanması irdelenmiştir.
Brülör çıkışında kimyasal reaksiyon
sonucu, oluşan yanma esnasında çekirdek sıcaklığının yaklaşık 3000 K
değerindedir.
Cüruf
üzerine etki eden sıcaklığın ise 2200 K mertebelerinde olduğu tespit
edilmiştir.
Radyasyon
sıcaklığı elektrotların altında kalan bölgede en yüksek olduğu ve eriyiğin
döküldüğü uç kısımla yüklemenin yapıldığı bölgede 1850 K mertebelerine düştüğü
belirlenmiştir.
Sabit
çalışma koşullarında, elektrik enerjisinin % 5.5 civarında elektrotlar
tarafından absorbe edildiği görülmüştür.
Bu çalışma sonucunda, tasarım aşamasındaki bir elektrik
ark ocağı için yanma ve radyasyon ile enerji üretiminin ve ısı geçişinin
modellenmesi için HAD yazılımının kullanılabileceği görülmüştür.

Kaynakça

  • [1] "Demir Çelik Üreticileri Derneği," 2011.
  • [2] "Demir-çelik, demir-çelikten eşya sektörü İhracat Genel Müdürlüğü Maden," Metal ve Orman Ürünleri Daire Başkanlığı, 2016.
  • [3] Ü. Çamdali, "Elektrik Ark Fırını Yöntemi ile Çelik Üretin Bir Tesiste Termodinamiğin İkinci Kanununun Analizi," İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 1998.
  • [4] J. Zhang, W. Prationa. L. Zhang, Z. Zhang, "Computational Fluid Dynamics Modeling on the Air-Firing and Oxy-fuel Combustion of Dried Victorian Brown Coal," Energy Fuels, vol. 27, pp. 4258-4269, 2013.
  • [5] Ushio, M., Szekely, J., Chang, C. W. "Mathematical modelling of flow field and heat transfer of high current arc discharge”, Iron making and Steel making, 8, 279–286.
  • [6] Szekely J., McKelliget, J., Choudhary, M., "Heat-transfer fluid flow and bath circulation in electric-arc furnaces and de plasma furnaces," Ironmaking Steelmaking, vol. 10, no. 4, pp. 169-179, 1983.
  • [7] Alexis, J., Ramírez, M., Trapaga, G., Jonson, P. "Modeling of a DC electric arc furnace-Heat transfer from the arc," ISIJ Int. , no. 40, pp. 1089-1097, 2000.
  • [8] Li, Y., Fruehan, R., "Computational fluid dynamics simulation of postcombustion in the electric arc furnace Metallurgical and Materials Transactions," vol. 34, no. 3, pp. 333-343, 2003.
  • [9] Guo, D., Irons, G., "Modeling Of Radiation Intensity An EAF" in Third international conference on CFD in the Minerals and Process Industries, , Melbourne, Australia, 2003.
  • [10] ANSYS, Inc. FLUENT, Version 14.0; ANSYS, Inc.: Canonsburg, PA,, 2013.
  • [11] Launder, B.E., Spalding, D.B. "Lectures in mathematical models of turbulence", Academic Press., London, England, 1972.
  • [12] Versteeg, H.K., Malalasekera, W., "An introduction to computational fluid dynamics," Longman Scientific & Technical, 1995.
  • [13] Patankar S.V., Numerical heat transfer and fluid flow, Taylor & Francis Inc, 2007.
  • [14] Morsı, S.A., Alexander, A.J., "An investigation of particle trajectories in two-phase flow systems," Journal of Fluid Mechanics, vol. 55, no. 2, pp. 193-208, 1972.
  • [15] Matveev, I.B., Serbin, S.I., "Modeling of the Coal Gasification Processes in a Hybrid Plasma Torch," IEEE Transactions on Plasma Science, vol. 35, no. 6, pp. 1639-1647, 2007.
  • [

CFD simulation of energy sources in EAF

Yıl 2017, Cilt: 21 Sayı: 5, 782 - 791, 01.10.2017
https://doi.org/10.16984/saufenbilder.286303

Öz

Modeling of energy production and heat transfer by carbon combustion and electrical arc is performed using Fluent computational fluid dynamic (CFD) software in this manuscript. The heat energy generated by carbon burning and electric arc radiation during combustion of the scrap in the EAO has been examined in detail. For this reason, modeling studies have utilized the combustion reactions of carbon particles and electromagnetically emitted radiation. Firstly, particle surface and gas reactions are investigated in terms of injected carbon burning. The result of the chemical reaction at the burner outlet is about 3000 K of the core temperature during combustion. It has been determined that the temperature which acts on the slag is 2200 K. The radiation temperature was found to be highest in the area under the electrodes and fell to 1850 K in the area where the melt was poured. Under steady operating conditions, it was seen that electric energy was absorbed by about 5.5% of the electrodes. As a result of this study, CFD software can be used to model combustion and radiation and energy generation and heat transfer for an electric arc furnace at the design study.

Kaynakça

  • [1] "Demir Çelik Üreticileri Derneği," 2011.
  • [2] "Demir-çelik, demir-çelikten eşya sektörü İhracat Genel Müdürlüğü Maden," Metal ve Orman Ürünleri Daire Başkanlığı, 2016.
  • [3] Ü. Çamdali, "Elektrik Ark Fırını Yöntemi ile Çelik Üretin Bir Tesiste Termodinamiğin İkinci Kanununun Analizi," İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 1998.
  • [4] J. Zhang, W. Prationa. L. Zhang, Z. Zhang, "Computational Fluid Dynamics Modeling on the Air-Firing and Oxy-fuel Combustion of Dried Victorian Brown Coal," Energy Fuels, vol. 27, pp. 4258-4269, 2013.
  • [5] Ushio, M., Szekely, J., Chang, C. W. "Mathematical modelling of flow field and heat transfer of high current arc discharge”, Iron making and Steel making, 8, 279–286.
  • [6] Szekely J., McKelliget, J., Choudhary, M., "Heat-transfer fluid flow and bath circulation in electric-arc furnaces and de plasma furnaces," Ironmaking Steelmaking, vol. 10, no. 4, pp. 169-179, 1983.
  • [7] Alexis, J., Ramírez, M., Trapaga, G., Jonson, P. "Modeling of a DC electric arc furnace-Heat transfer from the arc," ISIJ Int. , no. 40, pp. 1089-1097, 2000.
  • [8] Li, Y., Fruehan, R., "Computational fluid dynamics simulation of postcombustion in the electric arc furnace Metallurgical and Materials Transactions," vol. 34, no. 3, pp. 333-343, 2003.
  • [9] Guo, D., Irons, G., "Modeling Of Radiation Intensity An EAF" in Third international conference on CFD in the Minerals and Process Industries, , Melbourne, Australia, 2003.
  • [10] ANSYS, Inc. FLUENT, Version 14.0; ANSYS, Inc.: Canonsburg, PA,, 2013.
  • [11] Launder, B.E., Spalding, D.B. "Lectures in mathematical models of turbulence", Academic Press., London, England, 1972.
  • [12] Versteeg, H.K., Malalasekera, W., "An introduction to computational fluid dynamics," Longman Scientific & Technical, 1995.
  • [13] Patankar S.V., Numerical heat transfer and fluid flow, Taylor & Francis Inc, 2007.
  • [14] Morsı, S.A., Alexander, A.J., "An investigation of particle trajectories in two-phase flow systems," Journal of Fluid Mechanics, vol. 55, no. 2, pp. 193-208, 1972.
  • [15] Matveev, I.B., Serbin, S.I., "Modeling of the Coal Gasification Processes in a Hybrid Plasma Torch," IEEE Transactions on Plasma Science, vol. 35, no. 6, pp. 1639-1647, 2007.
  • [
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Konular Makine Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Ekrem Büyükkaya

Yayımlanma Tarihi 1 Ekim 2017
Gönderilme Tarihi 18 Ocak 2017
Kabul Tarihi 28 Nisan 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 21 Sayı: 5

Kaynak Göster

APA Büyükkaya, E. (2017). CFD simulation of energy sources in EAF. Sakarya University Journal of Science, 21(5), 782-791. https://doi.org/10.16984/saufenbilder.286303
AMA Büyükkaya E. CFD simulation of energy sources in EAF. SAUJS. Ekim 2017;21(5):782-791. doi:10.16984/saufenbilder.286303
Chicago Büyükkaya, Ekrem. “CFD Simulation of Energy Sources in EAF”. Sakarya University Journal of Science 21, sy. 5 (Ekim 2017): 782-91. https://doi.org/10.16984/saufenbilder.286303.
EndNote Büyükkaya E (01 Ekim 2017) CFD simulation of energy sources in EAF. Sakarya University Journal of Science 21 5 782–791.
IEEE E. Büyükkaya, “CFD simulation of energy sources in EAF”, SAUJS, c. 21, sy. 5, ss. 782–791, 2017, doi: 10.16984/saufenbilder.286303.
ISNAD Büyükkaya, Ekrem. “CFD Simulation of Energy Sources in EAF”. Sakarya University Journal of Science 21/5 (Ekim 2017), 782-791. https://doi.org/10.16984/saufenbilder.286303.
JAMA Büyükkaya E. CFD simulation of energy sources in EAF. SAUJS. 2017;21:782–791.
MLA Büyükkaya, Ekrem. “CFD Simulation of Energy Sources in EAF”. Sakarya University Journal of Science, c. 21, sy. 5, 2017, ss. 782-91, doi:10.16984/saufenbilder.286303.
Vancouver Büyükkaya E. CFD simulation of energy sources in EAF. SAUJS. 2017;21(5):782-91.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.