Araştırma Makalesi
BibTex RIS Kaynak Göster

Kumarin Türevli Kopolimerlerin Sentezi ve Karakterizasyonu

Yıl 2018, Cilt: 22 Sayı: 3, 880 - 887, 01.06.2018
https://doi.org/10.16984/saufenbilder.322354

Öz

Mevcut çalışmada, kumarin türevli yeni bir monomer olan
3-benzoil kumarin-7-il-metakrilat (BKMA) monomerinin metil metakrilat (MMA) ile
farklı bileşimlerde bir seri kopolimeri hazırlandı. Bu amaçla serbest radikal
polimerizasyon yöntemi kullanıldı. Spektral karakterizasyonlar FTIR ve
1H-NMR
teknikleri ile başarıldı. Kopolimer sistemlerinin bileşimleri
1H-NMR
spektrumlarından belirlendi. DSC analizinden kopolimer bileşimindeki BKMA oranı
%23 seviyesine düştüğünde camsı geçiş sıcaklığında 179
oC’den 165 oC’ye
bir azalış görüldü. Poli(BKMA) homopolimeri ve %54 BKMA bileşimli kopolimerin
TGA analizinde her iki polimer için başlangıç bozunma sıcaklıkları sırasıyla
321
oC ve 311 oC olarak kaydedildi.

Kaynakça

  • [1] K. N. Venugopala, V. Rashmi, and B. Odhav, “Review on natural coumarin lead compounds for their pharmacological activity,” BioMed Research International, Article ID 963248, 14, 2013.
  • [2] Y. Aoyama, T. Katayama, M. Yamamoto, H. Tanaka, and K. Kon, “A new antitumor antibiotic product, demethylchartreusin. Isolation and biological activities,” The Journal of Antibiotics, vol. 45, pp. 875–878, 1992.
  • [3] H. J. Patel, M. G. Patel, A. K. Patel, K. H. Patel, and R. M. Patel, “Synthesis, characterization and antimicrobial activity of important heterocyclic acrylic copolymers,” eXPRESS Polymer Letters vol. 2, no.10, pp. 727–734, 2008.
  • [4] M. P. Brun, L. Bischoff, C. Garbay, “A very short route to enantiomerically pure coumarin bearing fluorescent amino acids,” Angewandte Chemie International Edition, vol. 43, no. 26, pp. 3432-3436, 2004.
  • [5] L. Zhao, D. A. Loy, and K. J. Shea, “Photodeformable spherical hybrid nanoparticles,” Journal of the American Chemical Society, vol. 128, no. 44, pp. 14250-14251, 2006.
  • [6] P. O. Jackson, M. O’Neill, W. L. Duffy, P. Hindmarsh, S. M. Kelly, G. J. Owen, “An investigation of the role of cross-linking and photodegradation of side-chain coumarin polymers in the photoalignment of liquid crystals,” Chemistry of Materials, vol. 13, no. 2, pp. 694-703, 2001.
  • [7] C. Kim, A. Trajkovska, J. U. Wallace, S. H. Chen, “New insight into photoalignment of liquid crystals on coumarin-containing polymer films,” Macromolecules, vol. 39, no. 11, pp. 3817-3823, 2006.
  • [8] Y. Tian, E. Akiyama, Y. Nagase, A. Kanazawa, O. Tsutsumi, and T. Ikeda, “Liquid crystalline coumarin polymers, 1. Synthesis and properties of side-group liquid crystalline polymers with coumarin moieties,” Macromolecular Chemistry and Physics, vol. 201, no. 14, pp. 1640–1652, 2004 . [9] T. O. Soine, “Naturally occurring coumarins and related physiological activities,” Journal of Pharmaceutical Sciences, vol. 53, no. 3, pp. 231-264, 1964.
  • [10] P. Sharma, and S. Pritmani, “Synthesis, characterization and antimicrobial studies of some novel 3-arylazo-7 -hydroxy-4-methylcoumarins,” Indian Journal of Chemistry-B, vol. 38, no. 9, pp. 1139-1142, 1999.
  • [11 T. Patonay, G. Litkei, R. Bognar, J. Erdei, and C. Miszti, “Synthesis, antibacterial and antifungal activity of 4-hydroxycoumarin derivatives, analogues of novobiocin,” Pharmazie, vol. 39, no. 2, pp. 84-91, 1984.
  • [12] R. M. Shaker, “Synthesis and reactions of some new 4H-pyrano[3,2-c]benzopyran-5-one derivatives and their potential biological activities,” Pharmazie, vol. 51, no. 3, 148-151, 1996.
  • [13] A. A. Emmanuel-Giota, K. C. Fylaktakidou, D. J. Hadjipavlou-Litina, K. E. Litinas, and D. N. Nicolaides, “Synthesis and biological evalution of several 3-(coumarin-4-yl)tetrahydroisoxazole and 3 (coumarin-4-yl) dihydropyrazole derivatives,” Journal of Heterocyclic Chemistry, vol. 38, no. 3, pp. 717-722, 2001.
  • [14] Z. M. Nofal, M. El-Zahar, and S. Abd El-Karim, “Novel coumarin derivatives with expected biological activity,” Molecules, vol. 5, no. 3, pp. 99-113, 2000.
  • [15] A. Srivastava, V. Mishra, P. Singh, R. Kumar, “Coumarin-based polymer and its silver nanocomposite as advanced antibacterial agents: Synthetic path, kinetics of polymerization, and applications,” Journal of Applied Polymer Science, vol. 126, no. 2, pp. 395-407, 2012.
  • [16] A. Kurt, M. Kaya, and M. Koca, “Synthesis and characterization of coumarin derived surface active monomer, Adıyaman University Journal of Science, vol. 6, no. 1, pp. 110-121, 2016.
  • [17] Z. Essaidi, O. Krupka, K. Iliopoulos, E. Champigny, B. Sahraoui, M. Sallé, and D. Gindre, “Synthesis and functionalization of coumarin-containing copolymers for second order optical nonlinearities,” Optical Materials, vol. 35, no. 3, pp. 576–581, 2013.
  • [18] A. Kurt, and M. Koca, “Synthesis, characterization and thermal degradation kinetics of poly(3-acetylcoumarin-7-yl-methacrylate) and its organoclay nanocomposites,” Journal of Engineering Research, vol. 4 , no. 4, pp. 46-65, 2016.
  • [19] C. Zhang, R. Liang, C. Jiang, D. Chen, and A. Zhong, “Synthesis, characterization, and self-assembly of cationic coumarin side-chain polymer,” Journal of Applied Polymer Science, vol. 108, no. 4, pp. 2667–2673, 2008.
  • [20] A. F. Ayhan, “Kumarin Türevli Kopolimer Sistemlerinin Geliştirilmesi,” Yüksek Lisans Tezi, Adıyaman Üniversitesi Fen Bilimleri Enstitüsü, Adıyaman, 2017.
  • [21] A. Kurt, and K. Demirelli, “Synthesis and characterization of block copolymers of ethyl methacrylate with styrene via ATRP,” e-Journal of New World Sciences Academy Physical Sciences, vol. 4, no. 2, pp. 52–59, 2009.
  • [22] A. Kurt, “Influence of AlCl3 on the optical properties of new synthesized 3-armed poly(methyl methacrylate) films,” Turkish Journal of Chemistry, vol. 34, no. 1, pp. 67-69, 2010.
  • [23] A. Kurt, and K. Demirelli, “Graft copolymerization of poly(methyl methacrylate) with some alkyl methacrylates by atom transfer radical polymerization method and thermal properties,” Journal of Applied Polymer Science, vol. 125, no. 3, pp. 1855-1866, 2012.
  • [24] A. Kurt, and M. Koca, “Blending of poly(ethyl methacrylate) with poly(2-hydroxy-3-phenoxypropyl methacrylate): thermal and optical properties,” The Arabian Journal for Science and Engineering, vol. 39, no. 7, pp. 5413–5420, 2014.
  • [25] K. Kunal, C. G. Robertson, S. Pawlus, S. F. Hahn, and A. P. Sokolov, “Role of chemical structure in fragility of polymers: a qualitative picture,” Macromolecules, vol. 41, no. 19, pp. 7232–7238, 2008.
  • [26] N. R. Jadhav, V. L. Gaikwad, K. J. Nair, and H. M. Kadam, “Glass transition temperature: Basics and application in pharmaceutical sector,” Asian J. Pharm., vol. 3, no. 2, pp. 82–89, 2009.
  • [27] A. Kurt, “Thermal decomposition kinetics of poly(nButMA-b-St) diblock copolymer snthesized by ATRP,” Journal of Applied Polymer Science, vol. 114, no. 1, pp. 624-629, 2009.

Synthesis and Characterization of Coumarin Derived Copolymers

Yıl 2018, Cilt: 22 Sayı: 3, 880 - 887, 01.06.2018
https://doi.org/10.16984/saufenbilder.322354

Öz

In present study, a copolymer series of a new
coumarin derived monomer 3-benzoyl coumarin-7-yl-methacrylate (BKMA) monomer
with methyl methacrylate (MMA) at different compositions was prepared. For this
purpose, free radical polymerization method was used. Spectral
characterizations were performed by FTIR and 1H-NMR techniques.
Copolymer compositions were determined with 1H-NMR spectra. From DSC
analysis, the glass transition temperature of copolymers was decreased from 179
oC to 165 oC when the level of BKMA ratio decreased to
23% level. In TGA analysis of poly(BKMA) homopolymer and the copolymer with 54%
BKMA ratio, the initial decomposition temperatures of both polymers were
recorded to be 321 oC and 311 oC, respectively. 

Kaynakça

  • [1] K. N. Venugopala, V. Rashmi, and B. Odhav, “Review on natural coumarin lead compounds for their pharmacological activity,” BioMed Research International, Article ID 963248, 14, 2013.
  • [2] Y. Aoyama, T. Katayama, M. Yamamoto, H. Tanaka, and K. Kon, “A new antitumor antibiotic product, demethylchartreusin. Isolation and biological activities,” The Journal of Antibiotics, vol. 45, pp. 875–878, 1992.
  • [3] H. J. Patel, M. G. Patel, A. K. Patel, K. H. Patel, and R. M. Patel, “Synthesis, characterization and antimicrobial activity of important heterocyclic acrylic copolymers,” eXPRESS Polymer Letters vol. 2, no.10, pp. 727–734, 2008.
  • [4] M. P. Brun, L. Bischoff, C. Garbay, “A very short route to enantiomerically pure coumarin bearing fluorescent amino acids,” Angewandte Chemie International Edition, vol. 43, no. 26, pp. 3432-3436, 2004.
  • [5] L. Zhao, D. A. Loy, and K. J. Shea, “Photodeformable spherical hybrid nanoparticles,” Journal of the American Chemical Society, vol. 128, no. 44, pp. 14250-14251, 2006.
  • [6] P. O. Jackson, M. O’Neill, W. L. Duffy, P. Hindmarsh, S. M. Kelly, G. J. Owen, “An investigation of the role of cross-linking and photodegradation of side-chain coumarin polymers in the photoalignment of liquid crystals,” Chemistry of Materials, vol. 13, no. 2, pp. 694-703, 2001.
  • [7] C. Kim, A. Trajkovska, J. U. Wallace, S. H. Chen, “New insight into photoalignment of liquid crystals on coumarin-containing polymer films,” Macromolecules, vol. 39, no. 11, pp. 3817-3823, 2006.
  • [8] Y. Tian, E. Akiyama, Y. Nagase, A. Kanazawa, O. Tsutsumi, and T. Ikeda, “Liquid crystalline coumarin polymers, 1. Synthesis and properties of side-group liquid crystalline polymers with coumarin moieties,” Macromolecular Chemistry and Physics, vol. 201, no. 14, pp. 1640–1652, 2004 . [9] T. O. Soine, “Naturally occurring coumarins and related physiological activities,” Journal of Pharmaceutical Sciences, vol. 53, no. 3, pp. 231-264, 1964.
  • [10] P. Sharma, and S. Pritmani, “Synthesis, characterization and antimicrobial studies of some novel 3-arylazo-7 -hydroxy-4-methylcoumarins,” Indian Journal of Chemistry-B, vol. 38, no. 9, pp. 1139-1142, 1999.
  • [11 T. Patonay, G. Litkei, R. Bognar, J. Erdei, and C. Miszti, “Synthesis, antibacterial and antifungal activity of 4-hydroxycoumarin derivatives, analogues of novobiocin,” Pharmazie, vol. 39, no. 2, pp. 84-91, 1984.
  • [12] R. M. Shaker, “Synthesis and reactions of some new 4H-pyrano[3,2-c]benzopyran-5-one derivatives and their potential biological activities,” Pharmazie, vol. 51, no. 3, 148-151, 1996.
  • [13] A. A. Emmanuel-Giota, K. C. Fylaktakidou, D. J. Hadjipavlou-Litina, K. E. Litinas, and D. N. Nicolaides, “Synthesis and biological evalution of several 3-(coumarin-4-yl)tetrahydroisoxazole and 3 (coumarin-4-yl) dihydropyrazole derivatives,” Journal of Heterocyclic Chemistry, vol. 38, no. 3, pp. 717-722, 2001.
  • [14] Z. M. Nofal, M. El-Zahar, and S. Abd El-Karim, “Novel coumarin derivatives with expected biological activity,” Molecules, vol. 5, no. 3, pp. 99-113, 2000.
  • [15] A. Srivastava, V. Mishra, P. Singh, R. Kumar, “Coumarin-based polymer and its silver nanocomposite as advanced antibacterial agents: Synthetic path, kinetics of polymerization, and applications,” Journal of Applied Polymer Science, vol. 126, no. 2, pp. 395-407, 2012.
  • [16] A. Kurt, M. Kaya, and M. Koca, “Synthesis and characterization of coumarin derived surface active monomer, Adıyaman University Journal of Science, vol. 6, no. 1, pp. 110-121, 2016.
  • [17] Z. Essaidi, O. Krupka, K. Iliopoulos, E. Champigny, B. Sahraoui, M. Sallé, and D. Gindre, “Synthesis and functionalization of coumarin-containing copolymers for second order optical nonlinearities,” Optical Materials, vol. 35, no. 3, pp. 576–581, 2013.
  • [18] A. Kurt, and M. Koca, “Synthesis, characterization and thermal degradation kinetics of poly(3-acetylcoumarin-7-yl-methacrylate) and its organoclay nanocomposites,” Journal of Engineering Research, vol. 4 , no. 4, pp. 46-65, 2016.
  • [19] C. Zhang, R. Liang, C. Jiang, D. Chen, and A. Zhong, “Synthesis, characterization, and self-assembly of cationic coumarin side-chain polymer,” Journal of Applied Polymer Science, vol. 108, no. 4, pp. 2667–2673, 2008.
  • [20] A. F. Ayhan, “Kumarin Türevli Kopolimer Sistemlerinin Geliştirilmesi,” Yüksek Lisans Tezi, Adıyaman Üniversitesi Fen Bilimleri Enstitüsü, Adıyaman, 2017.
  • [21] A. Kurt, and K. Demirelli, “Synthesis and characterization of block copolymers of ethyl methacrylate with styrene via ATRP,” e-Journal of New World Sciences Academy Physical Sciences, vol. 4, no. 2, pp. 52–59, 2009.
  • [22] A. Kurt, “Influence of AlCl3 on the optical properties of new synthesized 3-armed poly(methyl methacrylate) films,” Turkish Journal of Chemistry, vol. 34, no. 1, pp. 67-69, 2010.
  • [23] A. Kurt, and K. Demirelli, “Graft copolymerization of poly(methyl methacrylate) with some alkyl methacrylates by atom transfer radical polymerization method and thermal properties,” Journal of Applied Polymer Science, vol. 125, no. 3, pp. 1855-1866, 2012.
  • [24] A. Kurt, and M. Koca, “Blending of poly(ethyl methacrylate) with poly(2-hydroxy-3-phenoxypropyl methacrylate): thermal and optical properties,” The Arabian Journal for Science and Engineering, vol. 39, no. 7, pp. 5413–5420, 2014.
  • [25] K. Kunal, C. G. Robertson, S. Pawlus, S. F. Hahn, and A. P. Sokolov, “Role of chemical structure in fragility of polymers: a qualitative picture,” Macromolecules, vol. 41, no. 19, pp. 7232–7238, 2008.
  • [26] N. R. Jadhav, V. L. Gaikwad, K. J. Nair, and H. M. Kadam, “Glass transition temperature: Basics and application in pharmaceutical sector,” Asian J. Pharm., vol. 3, no. 2, pp. 82–89, 2009.
  • [27] A. Kurt, “Thermal decomposition kinetics of poly(nButMA-b-St) diblock copolymer snthesized by ATRP,” Journal of Applied Polymer Science, vol. 114, no. 1, pp. 624-629, 2009.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Konular Kimya Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Adnan Kurt

Ahmet Faruk Ayhan Bu kişi benim

Murat Koca

Yayımlanma Tarihi 1 Haziran 2018
Gönderilme Tarihi 19 Haziran 2017
Kabul Tarihi 13 Kasım 2017
Yayımlandığı Sayı Yıl 2018 Cilt: 22 Sayı: 3

Kaynak Göster

APA Kurt, A., Ayhan, A. F., & Koca, M. (2018). Synthesis and Characterization of Coumarin Derived Copolymers. Sakarya University Journal of Science, 22(3), 880-887. https://doi.org/10.16984/saufenbilder.322354
AMA Kurt A, Ayhan AF, Koca M. Synthesis and Characterization of Coumarin Derived Copolymers. SAUJS. Haziran 2018;22(3):880-887. doi:10.16984/saufenbilder.322354
Chicago Kurt, Adnan, Ahmet Faruk Ayhan, ve Murat Koca. “Synthesis and Characterization of Coumarin Derived Copolymers”. Sakarya University Journal of Science 22, sy. 3 (Haziran 2018): 880-87. https://doi.org/10.16984/saufenbilder.322354.
EndNote Kurt A, Ayhan AF, Koca M (01 Haziran 2018) Synthesis and Characterization of Coumarin Derived Copolymers. Sakarya University Journal of Science 22 3 880–887.
IEEE A. Kurt, A. F. Ayhan, ve M. Koca, “Synthesis and Characterization of Coumarin Derived Copolymers”, SAUJS, c. 22, sy. 3, ss. 880–887, 2018, doi: 10.16984/saufenbilder.322354.
ISNAD Kurt, Adnan vd. “Synthesis and Characterization of Coumarin Derived Copolymers”. Sakarya University Journal of Science 22/3 (Haziran 2018), 880-887. https://doi.org/10.16984/saufenbilder.322354.
JAMA Kurt A, Ayhan AF, Koca M. Synthesis and Characterization of Coumarin Derived Copolymers. SAUJS. 2018;22:880–887.
MLA Kurt, Adnan vd. “Synthesis and Characterization of Coumarin Derived Copolymers”. Sakarya University Journal of Science, c. 22, sy. 3, 2018, ss. 880-7, doi:10.16984/saufenbilder.322354.
Vancouver Kurt A, Ayhan AF, Koca M. Synthesis and Characterization of Coumarin Derived Copolymers. SAUJS. 2018;22(3):880-7.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.