Araştırma Makalesi
BibTex RIS Kaynak Göster

A study on absolute summability factors

Yıl 2020, Cilt: 24 Sayı: 1, 220 - 223, 01.02.2020
https://doi.org/10.16984/saufenbilder.642406

Öz

In this study we proved theorems dealing with
summability factors giving relations between absolute Cesàro and absolute
weighted
summability methods. So we deduced some results in the special cases.

Kaynakça

  • [1] H. Bor, “Some equivalence theorems on absolute summability methods,” Acta Math. Hung., vol. 149, pp.208-214, 2016.[2] H. Bor, “On two summability methods,” Math. Proc. Cambridge Philos Soc., vol. 98, 147-149, 1985. [3] T.M. Flett, “On an extension of absolute summability and some theorems of Littlewood and Paley,” Proc. London Math. Soc., vol. 7, pp. 113-141, 1957.[4] Hazar Güleç, G.C. (in press).Summability factor relations between absolute weighted and Cesàro means, Mathematical Methods in the Applied Sciences. (DOI: 10.1002/mma.5399).[5] G.C. Hazar and M.A. Sarıgöl, “Compact and Matrix Operators on the Space |C,-1|_k,” J. Comput. Anal. Appl., vol.25, no.6, pp. 1014-1024, 2018.[6] G.C. Hazar, and M.A. Sarıgöl, “On factor relations between weighted and Nörlund means,” Tamkang J. Math. (in press).[7] I.J. Maddox, “Elements of functinal analysis, Cambridge University Press,” London, New York, 1970.[8] S.M. Mazhar, “On the absolute summability factors of infinite series,” Tohoku Math. J., vol.23, pp.433-451, 1971.[9] M.R. Mehdi, “Summability factors for generalized absolute summability I,” Proc. London Math. Soc., vol.3., no.10, pp.180-199, 1960.[10] R.N. Mohapatra, “On absolute Riesz summability factors,” J. Indian Math. Soc., vol.32, pp.113-129, 1968.[11] M. A. Sarıgöl, “Spaces of series Summable by absolute Cesàro and Matrix Operators ,” Comm. Math. Appl. , vol.7, no.1, pp.11-22, 2016.[12] M.A. Sarıgöl, “Extension of Mazhar's theorem on summability factors,” Kuwait J. Sci., vol.42, no.3, pp.28-35, 2015.[13] M.A. Sarıgöl, “On the local properties of factored Fourier series,” Appl. Math. Comp., vol.216, pp.3386-3390, 2010. [14] W.T. Sulaiman, “On summability factors of infinite series,” Proc. Amer. Math. Soc., vol.115, pp.313-317, 1992.[15] W.T. Sulaiman, “On some absolute summability factors of Infinite Series,” Gen. Math. Notes, vol.2, no.2, pp.7-13, 2011.[16] B. Thorpe, “Matrix transformations of Cesàro summable Series,” Acta Math. Hung., vol. 48(3-4), pp.255-265, 1986.
Yıl 2020, Cilt: 24 Sayı: 1, 220 - 223, 01.02.2020
https://doi.org/10.16984/saufenbilder.642406

Öz

Kaynakça

  • [1] H. Bor, “Some equivalence theorems on absolute summability methods,” Acta Math. Hung., vol. 149, pp.208-214, 2016.[2] H. Bor, “On two summability methods,” Math. Proc. Cambridge Philos Soc., vol. 98, 147-149, 1985. [3] T.M. Flett, “On an extension of absolute summability and some theorems of Littlewood and Paley,” Proc. London Math. Soc., vol. 7, pp. 113-141, 1957.[4] Hazar Güleç, G.C. (in press).Summability factor relations between absolute weighted and Cesàro means, Mathematical Methods in the Applied Sciences. (DOI: 10.1002/mma.5399).[5] G.C. Hazar and M.A. Sarıgöl, “Compact and Matrix Operators on the Space |C,-1|_k,” J. Comput. Anal. Appl., vol.25, no.6, pp. 1014-1024, 2018.[6] G.C. Hazar, and M.A. Sarıgöl, “On factor relations between weighted and Nörlund means,” Tamkang J. Math. (in press).[7] I.J. Maddox, “Elements of functinal analysis, Cambridge University Press,” London, New York, 1970.[8] S.M. Mazhar, “On the absolute summability factors of infinite series,” Tohoku Math. J., vol.23, pp.433-451, 1971.[9] M.R. Mehdi, “Summability factors for generalized absolute summability I,” Proc. London Math. Soc., vol.3., no.10, pp.180-199, 1960.[10] R.N. Mohapatra, “On absolute Riesz summability factors,” J. Indian Math. Soc., vol.32, pp.113-129, 1968.[11] M. A. Sarıgöl, “Spaces of series Summable by absolute Cesàro and Matrix Operators ,” Comm. Math. Appl. , vol.7, no.1, pp.11-22, 2016.[12] M.A. Sarıgöl, “Extension of Mazhar's theorem on summability factors,” Kuwait J. Sci., vol.42, no.3, pp.28-35, 2015.[13] M.A. Sarıgöl, “On the local properties of factored Fourier series,” Appl. Math. Comp., vol.216, pp.3386-3390, 2010. [14] W.T. Sulaiman, “On summability factors of infinite series,” Proc. Amer. Math. Soc., vol.115, pp.313-317, 1992.[15] W.T. Sulaiman, “On some absolute summability factors of Infinite Series,” Gen. Math. Notes, vol.2, no.2, pp.7-13, 2011.[16] B. Thorpe, “Matrix transformations of Cesàro summable Series,” Acta Math. Hung., vol. 48(3-4), pp.255-265, 1986.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

G. Canan Hazar Güleç 0000-0002-8825-5555

Yayımlanma Tarihi 1 Şubat 2020
Gönderilme Tarihi 4 Kasım 2019
Kabul Tarihi 12 Aralık 2019
Yayımlandığı Sayı Yıl 2020 Cilt: 24 Sayı: 1

Kaynak Göster

APA Hazar Güleç, G. C. (2020). A study on absolute summability factors. Sakarya University Journal of Science, 24(1), 220-223. https://doi.org/10.16984/saufenbilder.642406
AMA Hazar Güleç GC. A study on absolute summability factors. SAUJS. Şubat 2020;24(1):220-223. doi:10.16984/saufenbilder.642406
Chicago Hazar Güleç, G. Canan. “A Study on Absolute Summability Factors”. Sakarya University Journal of Science 24, sy. 1 (Şubat 2020): 220-23. https://doi.org/10.16984/saufenbilder.642406.
EndNote Hazar Güleç GC (01 Şubat 2020) A study on absolute summability factors. Sakarya University Journal of Science 24 1 220–223.
IEEE G. C. Hazar Güleç, “A study on absolute summability factors”, SAUJS, c. 24, sy. 1, ss. 220–223, 2020, doi: 10.16984/saufenbilder.642406.
ISNAD Hazar Güleç, G. Canan. “A Study on Absolute Summability Factors”. Sakarya University Journal of Science 24/1 (Şubat 2020), 220-223. https://doi.org/10.16984/saufenbilder.642406.
JAMA Hazar Güleç GC. A study on absolute summability factors. SAUJS. 2020;24:220–223.
MLA Hazar Güleç, G. Canan. “A Study on Absolute Summability Factors”. Sakarya University Journal of Science, c. 24, sy. 1, 2020, ss. 220-3, doi:10.16984/saufenbilder.642406.
Vancouver Hazar Güleç GC. A study on absolute summability factors. SAUJS. 2020;24(1):220-3.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.