Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 24 Sayı: 5, 872 - 881, 01.10.2020
https://doi.org/10.16984/saufenbilder.699176

Öz

Kaynakça

  • X. Liu, C. Li., Y.D. Deng. and C.Q. Su., “An energy-harvesting system using thermoelectric power generation for automotive application”, Electrical Power and Energy Systems, vol. 67 pp.510–516, 2015.
  • M.A. Elsheikh., D.A., Shnawah., M.F.M. Sabri, B.M. Said, M.H. Hassan, M.B.A. Bashir and M. Mohamad, “A review on thermoelectric renewable energy: Principle parameters that affect their performance”. Renewable and Sustainable Energy Reviews, vol. 30, pp. 337–355, 2014.
  • D. Champier, “Thermoelectric generators: A review of applications”, Energy Conversion and Management vol. 140, pp. 167–181, 2017.
  • M.F. Remeli, A. Date, B. Orr, L.C. Ding, B. Singh, N.D.N. Affandi and A. Akbarzadeh, “Experimental investigation of combined heat recovery and power generation using a heat pipe assisted thermoelectric generator system”, Energy Conversion and Management, vol. 111, pp.147–157, 2017.
  • Z. Tian, S. Lee and G. Chen, “Heat transfer in thermoelectric materials and devices”, Journal of Heat Transfer, vol. 135, pp. 1-14, 2013.
  • B. Orr, A. Akbarzadeh, M. Mochizuki and L. Singh, “A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes”, Applied Thermal Engineering, vol. 101, pp. 490–495, 2016.
  • B. Orr, A. Akbarzadeh. and P. Lappas, “An exhaust heat recovery system utilising thermoelectric generators and heat pipes”, Applied Thermal Engineering, vol. 126, pp. 1185–1190, 2017.
  • B. Orr, B. Singh, L. Tan and A. Kbarzadeh, “Electricity generation from an exhaust heat recovery system utilising thermoelectric cells and heat pipes”, Applied Thermal Engineering, vol. 73, pp. 588-597, 2014.
  • B. Orr and A. Akbarzadeh A, “Prospects of waste heat recovery and power generation using thermoelectric generators”, Energy Procedia, vol. 110, pp. 250 – 255, 2017.
  • M.F. Remeli, K. Verojporn,B. Singh, L. Kiatbodin L, A. Date and A. Akbarzadeh, Passive heat recovery system using combination of heat pipe and thermoelectric generator”, Energy Procedia, vol. 75, pp. 608 – 614, 2015.
  • M.F. Remeli, L. Kiatbodin, B. Singh, K. Verojporn, A. Date and A. Akbarzadeh, “Power generation from waste heat using heat pipe and thermoelectric generator”, Energy Procedia, vol. 75, pp. 645 – 650, 2015.
  • M.F. Remeli, L. Tan, A. Date, B. Singh and A. Akbarzadeh, “Simultaneous power generation and heat recovery using a heat pipe assisted thermoelectric generator system”, Energy Conversion and Management, vol. 91, pp. 110–119, 2015.
  • Q. Cao, W. Luan. and T. Wang, “Performance enhancement of heat pipes assisted thermoelectric generator for automobile exhaust heat recovery”, Applied Thermal Engineering, vol. 130, pp. 1472–1479, 2017.
  • H. Jouhara, A. Chauhan, T. Nannou, S. Almahmoud, B. Delpech and L.C. Wrobel, “Heat pipe based systems - Advances and applications”, Energy, vol. 128, pp. 729-754, 2017.
  • C.W. Chan, E. Siqueiros, J. Ling-Chin, M. Royapoor, A.P. and A.P. Roskilly, “Heat utilisation technologies: A critical review of heat pipes”, Renewable and Sustainable Energy Reviews, vol. 50, pp. 615–627, 2015.
  • S. Manikandan. and C.S. Kaushik, “Thermodynamics studies and maximum power point tracking in thermoelectric generator-thermoelectric cooler combined system”. Cryogenics, vol. 67, pp. 52-62, 2015.
  • D.K. Aswal, R. Basu and A. Singh, “Key issues in development of thermoelectric power generators: High figure-of-merit materials and their highly conducting interfaces with metallic interconnects”, Energy Conversion and Management, vol. 114, pp. 50–67, 2016.
  • J. Meng, X. Zhang and X. Wang, “Characteristics analysis and parametric study of a thermoelectric generator by considering variable material properties and heat losses” International Journal of Heat and Mass Transfer, vol. 80, pp. 227–235, 2015.
  • Zhang, X. and Zhao, L-D, Thermoelectric materials: Energy conversion between heat and electricity, Journal of Materiomics, 2015; 1: 92-105.
  • S. Twaha, J. Jie Zhu, Y. Yan and B. Li B, “A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement”, Renewable and Sustainable Energy Reviews, vol 65, pp, 698–726, 2016.
  • C.T. Hsu, G.Y. Huang, H.S. Chu, B. Yu, and D.J. Yao, An effective seebeck coefficient obtained by experimental results of a thermoelectric generator module, Applied Energy, vol. 88, pp. 5173–5179, 2011.
  • S.-C. Tzeng, T.-M. Jeng, and Y.-L. Lin, “Parametric study of heat-transfer design on the thermoelectric generator system”, International Communications in Heat and Mass Transfer, vol. 52, pp. 97–105, 2014.
  • U. Erturun, K. Erermis and K. Mossi K, “Effect of various leg geometries on thermo-mechanical and power generation performance of thermoelectric devices” Applied Thermal Engineering, vol. 73, pp. 128-141, 2014.
  • U. Erturun, K. Erermis and K. Mossi, “Influence of leg sizing and spacing on power generation and thermal stresses of thermoelectric devices” Applied Energy, vol. 159, pp. 19–27, 2015.

Design of Heat Pipe Assisted Thermoelectric Generator and Experimental Investigaton of the Power Performance

Yıl 2020, Cilt: 24 Sayı: 5, 872 - 881, 01.10.2020
https://doi.org/10.16984/saufenbilder.699176

Öz

A thermoelectric generator system has a potential to transform waste heat into electricity. Equate to other technologies of waste heat recover, usage of thermoelectric generators (TEGs) in a waste heat recovery system has many attractive features, for example quite operation, no moving parts, small size and endurance In addition to, thermoelectric generators are environmentally friendly materials that convert thermal energy directly into electricity by Seebeck effect.
In work presented, a heat pipe assisted thermoelectric generator system is designed to generate electricity from the waste heat. Usage of heat pipes can latently decrease the thermal resistance and pressure losses in the system as well as temperature regulation of the TEGs and enhanced design flexibility. The designed system is suitable for the heat recovery from the piped systems such as the exhaust and the cylindrical chimney systems.
The power performance of the designed thermoelectric generator system has been determined both theoretically and experimentally.

Kaynakça

  • X. Liu, C. Li., Y.D. Deng. and C.Q. Su., “An energy-harvesting system using thermoelectric power generation for automotive application”, Electrical Power and Energy Systems, vol. 67 pp.510–516, 2015.
  • M.A. Elsheikh., D.A., Shnawah., M.F.M. Sabri, B.M. Said, M.H. Hassan, M.B.A. Bashir and M. Mohamad, “A review on thermoelectric renewable energy: Principle parameters that affect their performance”. Renewable and Sustainable Energy Reviews, vol. 30, pp. 337–355, 2014.
  • D. Champier, “Thermoelectric generators: A review of applications”, Energy Conversion and Management vol. 140, pp. 167–181, 2017.
  • M.F. Remeli, A. Date, B. Orr, L.C. Ding, B. Singh, N.D.N. Affandi and A. Akbarzadeh, “Experimental investigation of combined heat recovery and power generation using a heat pipe assisted thermoelectric generator system”, Energy Conversion and Management, vol. 111, pp.147–157, 2017.
  • Z. Tian, S. Lee and G. Chen, “Heat transfer in thermoelectric materials and devices”, Journal of Heat Transfer, vol. 135, pp. 1-14, 2013.
  • B. Orr, A. Akbarzadeh, M. Mochizuki and L. Singh, “A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes”, Applied Thermal Engineering, vol. 101, pp. 490–495, 2016.
  • B. Orr, A. Akbarzadeh. and P. Lappas, “An exhaust heat recovery system utilising thermoelectric generators and heat pipes”, Applied Thermal Engineering, vol. 126, pp. 1185–1190, 2017.
  • B. Orr, B. Singh, L. Tan and A. Kbarzadeh, “Electricity generation from an exhaust heat recovery system utilising thermoelectric cells and heat pipes”, Applied Thermal Engineering, vol. 73, pp. 588-597, 2014.
  • B. Orr and A. Akbarzadeh A, “Prospects of waste heat recovery and power generation using thermoelectric generators”, Energy Procedia, vol. 110, pp. 250 – 255, 2017.
  • M.F. Remeli, K. Verojporn,B. Singh, L. Kiatbodin L, A. Date and A. Akbarzadeh, Passive heat recovery system using combination of heat pipe and thermoelectric generator”, Energy Procedia, vol. 75, pp. 608 – 614, 2015.
  • M.F. Remeli, L. Kiatbodin, B. Singh, K. Verojporn, A. Date and A. Akbarzadeh, “Power generation from waste heat using heat pipe and thermoelectric generator”, Energy Procedia, vol. 75, pp. 645 – 650, 2015.
  • M.F. Remeli, L. Tan, A. Date, B. Singh and A. Akbarzadeh, “Simultaneous power generation and heat recovery using a heat pipe assisted thermoelectric generator system”, Energy Conversion and Management, vol. 91, pp. 110–119, 2015.
  • Q. Cao, W. Luan. and T. Wang, “Performance enhancement of heat pipes assisted thermoelectric generator for automobile exhaust heat recovery”, Applied Thermal Engineering, vol. 130, pp. 1472–1479, 2017.
  • H. Jouhara, A. Chauhan, T. Nannou, S. Almahmoud, B. Delpech and L.C. Wrobel, “Heat pipe based systems - Advances and applications”, Energy, vol. 128, pp. 729-754, 2017.
  • C.W. Chan, E. Siqueiros, J. Ling-Chin, M. Royapoor, A.P. and A.P. Roskilly, “Heat utilisation technologies: A critical review of heat pipes”, Renewable and Sustainable Energy Reviews, vol. 50, pp. 615–627, 2015.
  • S. Manikandan. and C.S. Kaushik, “Thermodynamics studies and maximum power point tracking in thermoelectric generator-thermoelectric cooler combined system”. Cryogenics, vol. 67, pp. 52-62, 2015.
  • D.K. Aswal, R. Basu and A. Singh, “Key issues in development of thermoelectric power generators: High figure-of-merit materials and their highly conducting interfaces with metallic interconnects”, Energy Conversion and Management, vol. 114, pp. 50–67, 2016.
  • J. Meng, X. Zhang and X. Wang, “Characteristics analysis and parametric study of a thermoelectric generator by considering variable material properties and heat losses” International Journal of Heat and Mass Transfer, vol. 80, pp. 227–235, 2015.
  • Zhang, X. and Zhao, L-D, Thermoelectric materials: Energy conversion between heat and electricity, Journal of Materiomics, 2015; 1: 92-105.
  • S. Twaha, J. Jie Zhu, Y. Yan and B. Li B, “A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement”, Renewable and Sustainable Energy Reviews, vol 65, pp, 698–726, 2016.
  • C.T. Hsu, G.Y. Huang, H.S. Chu, B. Yu, and D.J. Yao, An effective seebeck coefficient obtained by experimental results of a thermoelectric generator module, Applied Energy, vol. 88, pp. 5173–5179, 2011.
  • S.-C. Tzeng, T.-M. Jeng, and Y.-L. Lin, “Parametric study of heat-transfer design on the thermoelectric generator system”, International Communications in Heat and Mass Transfer, vol. 52, pp. 97–105, 2014.
  • U. Erturun, K. Erermis and K. Mossi K, “Effect of various leg geometries on thermo-mechanical and power generation performance of thermoelectric devices” Applied Thermal Engineering, vol. 73, pp. 128-141, 2014.
  • U. Erturun, K. Erermis and K. Mossi, “Influence of leg sizing and spacing on power generation and thermal stresses of thermoelectric devices” Applied Energy, vol. 159, pp. 19–27, 2015.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Yaşar İslamoğlu 0000-0003-3856-7240

İmdat Taymaz 0000-0001-5025-5480

Cem Parmaksızoğlu 0000-0003-0789-9840

Murat Özsoy 0000-0003-2400-5212

Erman Aslan 0000-0001-8595-6092

Yayımlanma Tarihi 1 Ekim 2020
Gönderilme Tarihi 5 Mart 2020
Kabul Tarihi 23 Haziran 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 24 Sayı: 5

Kaynak Göster

APA İslamoğlu, Y., Taymaz, İ., Parmaksızoğlu, C., Özsoy, M., vd. (2020). Design of Heat Pipe Assisted Thermoelectric Generator and Experimental Investigaton of the Power Performance. Sakarya University Journal of Science, 24(5), 872-881. https://doi.org/10.16984/saufenbilder.699176
AMA İslamoğlu Y, Taymaz İ, Parmaksızoğlu C, Özsoy M, Aslan E. Design of Heat Pipe Assisted Thermoelectric Generator and Experimental Investigaton of the Power Performance. SAUJS. Ekim 2020;24(5):872-881. doi:10.16984/saufenbilder.699176
Chicago İslamoğlu, Yaşar, İmdat Taymaz, Cem Parmaksızoğlu, Murat Özsoy, ve Erman Aslan. “Design of Heat Pipe Assisted Thermoelectric Generator and Experimental Investigaton of the Power Performance”. Sakarya University Journal of Science 24, sy. 5 (Ekim 2020): 872-81. https://doi.org/10.16984/saufenbilder.699176.
EndNote İslamoğlu Y, Taymaz İ, Parmaksızoğlu C, Özsoy M, Aslan E (01 Ekim 2020) Design of Heat Pipe Assisted Thermoelectric Generator and Experimental Investigaton of the Power Performance. Sakarya University Journal of Science 24 5 872–881.
IEEE Y. İslamoğlu, İ. Taymaz, C. Parmaksızoğlu, M. Özsoy, ve E. Aslan, “Design of Heat Pipe Assisted Thermoelectric Generator and Experimental Investigaton of the Power Performance”, SAUJS, c. 24, sy. 5, ss. 872–881, 2020, doi: 10.16984/saufenbilder.699176.
ISNAD İslamoğlu, Yaşar vd. “Design of Heat Pipe Assisted Thermoelectric Generator and Experimental Investigaton of the Power Performance”. Sakarya University Journal of Science 24/5 (Ekim 2020), 872-881. https://doi.org/10.16984/saufenbilder.699176.
JAMA İslamoğlu Y, Taymaz İ, Parmaksızoğlu C, Özsoy M, Aslan E. Design of Heat Pipe Assisted Thermoelectric Generator and Experimental Investigaton of the Power Performance. SAUJS. 2020;24:872–881.
MLA İslamoğlu, Yaşar vd. “Design of Heat Pipe Assisted Thermoelectric Generator and Experimental Investigaton of the Power Performance”. Sakarya University Journal of Science, c. 24, sy. 5, 2020, ss. 872-81, doi:10.16984/saufenbilder.699176.
Vancouver İslamoğlu Y, Taymaz İ, Parmaksızoğlu C, Özsoy M, Aslan E. Design of Heat Pipe Assisted Thermoelectric Generator and Experimental Investigaton of the Power Performance. SAUJS. 2020;24(5):872-81.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.