Load forecasting is an essential task which is executed by electricity retail companies. By predicting the demand accurately, companies can prevent waste of resources and blackouts. Load forecasting directly affect the financial of the company and the stability of the Turkish Electricity Market. This study is conducted with an electricity retail company, and main focus of the study is to build accurate models for load. Datasets with novel features are preprocessed, then deep learning models are built in order to achieve high accuracy for these problems. Furthermore, a novel method for solving regression problems with classification approach (discretization) is developed for this study. In order to obtain more robust model, an ensemble model is developed and the success of individual models are evaluated in comparison to each other.
Birincil Dil | İngilizce |
---|---|
Konular | Endüstri Mühendisliği |
Bölüm | Araştırma Makalesi |
Yazarlar | |
Erken Görünüm Tarihi | 23 Şubat 2022 |
Yayımlanma Tarihi | 28 Şubat 2022 |
Gönderilme Tarihi | 14 Ağustos 2021 |
Kabul Tarihi | 19 Aralık 2021 |
Yayımlandığı Sayı | Yıl 2022 Cilt: 26 Sayı: 1 |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.