Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of Different Parameters on Enzymatic Hydrolysis of Hazelnut Shells

Yıl 2024, Cilt: 28 Sayı: 5, 924 - 929, 25.10.2024

Öz

In the last few decades, the increasing levels of environmental pollution have prompted a shift towards alternative energy sources and biobased solutions, such as lignocellulosic biomass. Lignocellulosic biomass (LB) is primarily derived from plants and is composed mainly of polysaccharides, namely cellulose, hemicellulose, and the aromatic polymer lignin. Hazelnut shells (HS), with a high lignin content of 43%, hemicellulose of 30%, and cellulose of 26%, hold promise as a valuable source of LB. In order to process those LB, lignin and hemicellulose are separated using various treatment methods. However, instead of being used solely for combustion, lignin-containing materials can be valorized for a range of purposes, from biomedical applications to the energy sector. In this study, the enzymatic hydrolysis of HS was conducted over different time periods (24, 48, 72, and 96 hours), at different temperature values with varying enzyme concentrations (0.05, 0.1, and 0.25 mL of cellulase/xylanase enzyme cocktail). To enhance the enzymatic hydrolysis, an alkaline pretreatment method using sodium hydroxide (NaOH) was employed. The results demonstrate that the maximum sugar concentration was achieved at 50°C, after 72 hours, and with a cellulase/xylanase cocktail concentration of 0.1 mL.

Kaynakça

  • M. Chang, D. Li, W. Wang, D. Chen, Y. Zhang, H. Hu, X. Ye, “Comparison of sodium hydroxide and calcium hydroxide pretreatments on the enzymatic hydrolysis and lignin recovery of sugarcane bagasse,” Bioresource Technology, vol. 244(1), 1055-1058, 2017.
  • A. Zoghlami, G. Paës, “Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis,” Frontiers in Chemistry, vol. 7, 874, 2019.
  • N. Akhtar, K. Gupta, D. Goyal, A. Goyal,” Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass,” Environmental Progress and Sustainable Energy, no 35, pp. 489–511, 2016.
  • J. Y. Park, R. Shiroma, M. I. Al-Haq, Y. Zhang, M. Ike, Y. Arai-Sanoh, A. Ida, M. Kondo, K. Tokuyasu, “A novel lime pretreatment for subsequent bioethanol production from rice straw-calcium capturing by carbonation (CaCCO) process,” Bioresource Technology, 101, pp. 6805–6811, 2010.
  • C. I. S. Rodrigues, J. J. Jackson, M. D. Montross, “A molar basis comparison of calcium hydroxide, sodium hydroxide, and potassium hydroxide on the pretreatment of switchgrass and miscanthus under high solids conditions,” Industrial Crops and Products, vol. 92, pp.165–173, 2016.
  • A. U. Buranov, G. Mazza, “Lignin in straw of herbaceous crops,” Industrial Crops and Products, vol.28, no. 3, pp. 237-259, 2008.
  • J. H. Grabber, “How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies,” Crop Science, vol. 45, no. 3, pp. 820-831, 2005.
  • J. S. Kim, Y. Y. Lee, T. H. Kim, “A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass,” Bioresource Technology, 199, pp. 42–48, 2016.
  • P. Yadav, J. Maharjan, S. Korpole, G.S. Prasad, G. Sahni, T. Bhattarai, L. Sreerama, “Production, Purification, and Characterization of Thermostable Alkaline Xylanase from Anoxybacillus kamchatkensis NASTPD13”. Frontiers in Bioengineering and Biotechnology, vol 156, pp. 65, 2018.
  • S. D. Zhu, Y. X. Wu, Z. N. Yu, Q. M. Chen, G. Y. Wu, F. Q. Yu, C. W. Wang, S. W. Jin, “Microwave-assisted Alkali Pre-treatment of Wheat Straw and its Enzymatic Hydrolysis.” Biosystems Engineering, vol. 4, pp. 437–442, 2006.
  • E. Bertrand, L. P. S. Vandenberghe, C. R. Soccol, J. C. Sigoillot, C. Faulds, “First Generation Bioethanol,” Green Fuels Technology: Biofuels; Green Energy and Technology; C.R. Soccol, S.K. Brar, C. Faulds, L.P. Ramos, Eds.; Springer International Publishing: Cham, Switzerland, pp. 175–212, 2016.
  • P. Y. Bruice, “Organic Chemistry (4th ed.)”. Upper Saddle River, N.J.: Prentice Hall, 2004.
  • A. F. Murawski de Mello, L. Porto de Souza Vandenberghe, K. K. Valladares-Diestra, G. Amaro Bittencourt, W. J. Martinez Burgos, C. R. Soccol, “Corn First-Generation Bioethanol Unities with Energy and Dried Grains with Solubles (DDGS) Production,” Liquid Biofuels: Bioethanol; Biofuel and Biorefinery Technologies; C.R. Soccol, G. Amarante Guimarães Pereira, C. G. Dussap, L. Porto de Souza Vandenberghe, Springer International Publishing: Cham, Switzerland, pp. 109–132, 2022.
  • S. K. Mohanty, M. R. Swain, “Chapter 3—Bioethanol Production from Corn and Wheat: Food, Fuel, and Future.” In Bioethanol Production from Food Crops; R.C. Ray, S. Ramachandran, Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 45–59, 2019.
  • Y. M. Tao, X. Z. Zhu, J. Z. Huang, S. J. Ma, X. B. Wu, M. N. Long, & Q. Chen, “Purification and properties of endoglucanase from a sugar cane bagasse hydrolyzing strain, Aspergillus glaucus XC9,” Journal of Agricultural and Food Chemistry, vol58, no 10, pp. 6126–6130, 2010.
  • J. J. Stickel, R. T. Elander, J. D. Mcmillan,” Enzymatic Hydrolysis of Lignocellulosic Biomass.” Roman Brunecky Book, Book Editor(s): V.S. Bisaria, A. Kondo, 2014, pp. 77-103, 2014.
  • K. Vasić, Ž. Knez, M. Leitgeb, “Bioethanol Production by Enzymatic Hydrolysis from Different Lignocellulosic Sources.” Molecules, vol. 26,3, pp. 753, 2021.
  • R. Łukajtis, P. Rybarczyk, K. Kucharska, D. K. Łyskawa, E. Słupek, K. Wychodnik, M. Kamiński,” Optimization of Saccharification Conditions of Lignocellulosic Biomass Under Alkaline Pre-Treatment and Enzymatic Hydrolysis” Energies, vol. 11, 4, pp. 886, 2018.
  • V. Rana,” Optimization of enzymatic hydrolysis of lignocellulosic biomass,” Ph.D. dissertation, Washington State University, 2013.
  • O. Yildirim, D. Tunay, B. Ozkaya,” Optimization of Enzymatic Hydrolysis Conditions of Chemical Pretreated Cotton Stalk Using Response Surface Methodology for Enhanced Bioethanol Production Yield.” Biomass Conversion and Biorefinery, vol 13, pp. 6623-6634, 2023.
  • E. B. Moya, B. Syhler, J. O. Manso, G. Dragone, S.I. Mussatto,” Enzymatic Hydrolysis Cocktail Optimization for the Intensification of Sugar Extraction from Sugarcane Bagasse.” International Journal of Biological Macromolecules, vol. 242, 2023.
  • J. Zhou, Y. H. Wang, J. Chu, L.Z. Luo, Y. P. Zhuang, S. L. Zhang,” Optimization of Cellulase Mixture for Efficient Hydrolysis of Steam-Exploded Corn Stover by Statistically Designed Experiments.” Bioresource Technology, vol. 100, 2, pp. 819-825, 2009.
  • S. S. Nielsen, “Phenol-Sulfuric Acid Method for Total Carbohydrates.” Food Analysis Laboratory Manual, pp. 47-53, 2009.
  • L. Han, J. Feng, S. Zhang, Z. Ma, Y. Wang & X. Zhang,” Alkali Pretreated of Wheat Straw and Its Enzymatic Hydrolysis.” Brazilian Journal of Microbiology, vol. 43, 1, pp. 53–61, 2012.
  • M. J. Liszka, M. E. Clark, E. Schneider, D. S. Clark, “Nature versus nurture: Developing enzymes that function under extreme conditions.” Annual Review of Chemical and Biomolecular Engineering, vol 3, pp. 77–102, 2012.
  • N. A. S. M. Rosdee, N. Masngut, S. M. Shaarani, S. Jamek, M. S. M. Sueb, “Enzymatic hydrolysis of lignocellulosic biomass from pineapple leaves by using endo-1,4-xylanase: Effect of pH, temperature, enzyme loading and reaction time,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 736, 022095, 2020.
  • D. K. A. Fortkamp, “High Xylanase Production by Trichoderma viride Using Pineapple Peel as Substrate and Its Application in Pulp Biobleaching,” African Journal of Biotechnology, pp. 2249-2259, 2014.
Yıl 2024, Cilt: 28 Sayı: 5, 924 - 929, 25.10.2024

Öz

Kaynakça

  • M. Chang, D. Li, W. Wang, D. Chen, Y. Zhang, H. Hu, X. Ye, “Comparison of sodium hydroxide and calcium hydroxide pretreatments on the enzymatic hydrolysis and lignin recovery of sugarcane bagasse,” Bioresource Technology, vol. 244(1), 1055-1058, 2017.
  • A. Zoghlami, G. Paës, “Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis,” Frontiers in Chemistry, vol. 7, 874, 2019.
  • N. Akhtar, K. Gupta, D. Goyal, A. Goyal,” Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass,” Environmental Progress and Sustainable Energy, no 35, pp. 489–511, 2016.
  • J. Y. Park, R. Shiroma, M. I. Al-Haq, Y. Zhang, M. Ike, Y. Arai-Sanoh, A. Ida, M. Kondo, K. Tokuyasu, “A novel lime pretreatment for subsequent bioethanol production from rice straw-calcium capturing by carbonation (CaCCO) process,” Bioresource Technology, 101, pp. 6805–6811, 2010.
  • C. I. S. Rodrigues, J. J. Jackson, M. D. Montross, “A molar basis comparison of calcium hydroxide, sodium hydroxide, and potassium hydroxide on the pretreatment of switchgrass and miscanthus under high solids conditions,” Industrial Crops and Products, vol. 92, pp.165–173, 2016.
  • A. U. Buranov, G. Mazza, “Lignin in straw of herbaceous crops,” Industrial Crops and Products, vol.28, no. 3, pp. 237-259, 2008.
  • J. H. Grabber, “How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies,” Crop Science, vol. 45, no. 3, pp. 820-831, 2005.
  • J. S. Kim, Y. Y. Lee, T. H. Kim, “A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass,” Bioresource Technology, 199, pp. 42–48, 2016.
  • P. Yadav, J. Maharjan, S. Korpole, G.S. Prasad, G. Sahni, T. Bhattarai, L. Sreerama, “Production, Purification, and Characterization of Thermostable Alkaline Xylanase from Anoxybacillus kamchatkensis NASTPD13”. Frontiers in Bioengineering and Biotechnology, vol 156, pp. 65, 2018.
  • S. D. Zhu, Y. X. Wu, Z. N. Yu, Q. M. Chen, G. Y. Wu, F. Q. Yu, C. W. Wang, S. W. Jin, “Microwave-assisted Alkali Pre-treatment of Wheat Straw and its Enzymatic Hydrolysis.” Biosystems Engineering, vol. 4, pp. 437–442, 2006.
  • E. Bertrand, L. P. S. Vandenberghe, C. R. Soccol, J. C. Sigoillot, C. Faulds, “First Generation Bioethanol,” Green Fuels Technology: Biofuels; Green Energy and Technology; C.R. Soccol, S.K. Brar, C. Faulds, L.P. Ramos, Eds.; Springer International Publishing: Cham, Switzerland, pp. 175–212, 2016.
  • P. Y. Bruice, “Organic Chemistry (4th ed.)”. Upper Saddle River, N.J.: Prentice Hall, 2004.
  • A. F. Murawski de Mello, L. Porto de Souza Vandenberghe, K. K. Valladares-Diestra, G. Amaro Bittencourt, W. J. Martinez Burgos, C. R. Soccol, “Corn First-Generation Bioethanol Unities with Energy and Dried Grains with Solubles (DDGS) Production,” Liquid Biofuels: Bioethanol; Biofuel and Biorefinery Technologies; C.R. Soccol, G. Amarante Guimarães Pereira, C. G. Dussap, L. Porto de Souza Vandenberghe, Springer International Publishing: Cham, Switzerland, pp. 109–132, 2022.
  • S. K. Mohanty, M. R. Swain, “Chapter 3—Bioethanol Production from Corn and Wheat: Food, Fuel, and Future.” In Bioethanol Production from Food Crops; R.C. Ray, S. Ramachandran, Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 45–59, 2019.
  • Y. M. Tao, X. Z. Zhu, J. Z. Huang, S. J. Ma, X. B. Wu, M. N. Long, & Q. Chen, “Purification and properties of endoglucanase from a sugar cane bagasse hydrolyzing strain, Aspergillus glaucus XC9,” Journal of Agricultural and Food Chemistry, vol58, no 10, pp. 6126–6130, 2010.
  • J. J. Stickel, R. T. Elander, J. D. Mcmillan,” Enzymatic Hydrolysis of Lignocellulosic Biomass.” Roman Brunecky Book, Book Editor(s): V.S. Bisaria, A. Kondo, 2014, pp. 77-103, 2014.
  • K. Vasić, Ž. Knez, M. Leitgeb, “Bioethanol Production by Enzymatic Hydrolysis from Different Lignocellulosic Sources.” Molecules, vol. 26,3, pp. 753, 2021.
  • R. Łukajtis, P. Rybarczyk, K. Kucharska, D. K. Łyskawa, E. Słupek, K. Wychodnik, M. Kamiński,” Optimization of Saccharification Conditions of Lignocellulosic Biomass Under Alkaline Pre-Treatment and Enzymatic Hydrolysis” Energies, vol. 11, 4, pp. 886, 2018.
  • V. Rana,” Optimization of enzymatic hydrolysis of lignocellulosic biomass,” Ph.D. dissertation, Washington State University, 2013.
  • O. Yildirim, D. Tunay, B. Ozkaya,” Optimization of Enzymatic Hydrolysis Conditions of Chemical Pretreated Cotton Stalk Using Response Surface Methodology for Enhanced Bioethanol Production Yield.” Biomass Conversion and Biorefinery, vol 13, pp. 6623-6634, 2023.
  • E. B. Moya, B. Syhler, J. O. Manso, G. Dragone, S.I. Mussatto,” Enzymatic Hydrolysis Cocktail Optimization for the Intensification of Sugar Extraction from Sugarcane Bagasse.” International Journal of Biological Macromolecules, vol. 242, 2023.
  • J. Zhou, Y. H. Wang, J. Chu, L.Z. Luo, Y. P. Zhuang, S. L. Zhang,” Optimization of Cellulase Mixture for Efficient Hydrolysis of Steam-Exploded Corn Stover by Statistically Designed Experiments.” Bioresource Technology, vol. 100, 2, pp. 819-825, 2009.
  • S. S. Nielsen, “Phenol-Sulfuric Acid Method for Total Carbohydrates.” Food Analysis Laboratory Manual, pp. 47-53, 2009.
  • L. Han, J. Feng, S. Zhang, Z. Ma, Y. Wang & X. Zhang,” Alkali Pretreated of Wheat Straw and Its Enzymatic Hydrolysis.” Brazilian Journal of Microbiology, vol. 43, 1, pp. 53–61, 2012.
  • M. J. Liszka, M. E. Clark, E. Schneider, D. S. Clark, “Nature versus nurture: Developing enzymes that function under extreme conditions.” Annual Review of Chemical and Biomolecular Engineering, vol 3, pp. 77–102, 2012.
  • N. A. S. M. Rosdee, N. Masngut, S. M. Shaarani, S. Jamek, M. S. M. Sueb, “Enzymatic hydrolysis of lignocellulosic biomass from pineapple leaves by using endo-1,4-xylanase: Effect of pH, temperature, enzyme loading and reaction time,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 736, 022095, 2020.
  • D. K. A. Fortkamp, “High Xylanase Production by Trichoderma viride Using Pineapple Peel as Substrate and Its Application in Pulp Biobleaching,” African Journal of Biotechnology, pp. 2249-2259, 2014.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyokimya ve Hücre Biyolojisi (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Özcan Gezen 0000-0002-9695-7725

İrem Deniz 0000-0002-1171-8259

Erken Görünüm Tarihi 14 Ekim 2024
Yayımlanma Tarihi 25 Ekim 2024
Gönderilme Tarihi 6 Kasım 2023
Kabul Tarihi 26 Ağustos 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 28 Sayı: 5

Kaynak Göster

APA Gezen, Ö., & Deniz, İ. (2024). Effect of Different Parameters on Enzymatic Hydrolysis of Hazelnut Shells. Sakarya University Journal of Science, 28(5), 924-929.
AMA Gezen Ö, Deniz İ. Effect of Different Parameters on Enzymatic Hydrolysis of Hazelnut Shells. SAUJS. Ekim 2024;28(5):924-929.
Chicago Gezen, Özcan, ve İrem Deniz. “Effect of Different Parameters on Enzymatic Hydrolysis of Hazelnut Shells”. Sakarya University Journal of Science 28, sy. 5 (Ekim 2024): 924-29.
EndNote Gezen Ö, Deniz İ (01 Ekim 2024) Effect of Different Parameters on Enzymatic Hydrolysis of Hazelnut Shells. Sakarya University Journal of Science 28 5 924–929.
IEEE Ö. Gezen ve İ. Deniz, “Effect of Different Parameters on Enzymatic Hydrolysis of Hazelnut Shells”, SAUJS, c. 28, sy. 5, ss. 924–929, 2024.
ISNAD Gezen, Özcan - Deniz, İrem. “Effect of Different Parameters on Enzymatic Hydrolysis of Hazelnut Shells”. Sakarya University Journal of Science 28/5 (Ekim 2024), 924-929.
JAMA Gezen Ö, Deniz İ. Effect of Different Parameters on Enzymatic Hydrolysis of Hazelnut Shells. SAUJS. 2024;28:924–929.
MLA Gezen, Özcan ve İrem Deniz. “Effect of Different Parameters on Enzymatic Hydrolysis of Hazelnut Shells”. Sakarya University Journal of Science, c. 28, sy. 5, 2024, ss. 924-9.
Vancouver Gezen Ö, Deniz İ. Effect of Different Parameters on Enzymatic Hydrolysis of Hazelnut Shells. SAUJS. 2024;28(5):924-9.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.