Research Article
BibTex RIS Cite

Humidity Effect on Adsorption Kinetics of Aromatic and Chlorinated Hydrocarbon Vapors onto Fe2O3 Thin Film

Year 2025, Volume: 29 Issue: 2, 140 - 150
https://doi.org/10.16984/saufenbilder.1582286

Abstract

In this study, the influence of relative humidity on amorphous Fe2O3 thin film’ sensing properties towards aromatic and chlorinated hydrocarbon vapor and their adsorption kinetics were examined systematically. The sensing results showed that the relative humidity level has a significant effect not only on the aromatic and hydrocarbon sensing performance of Fe2O3 films but also on the baseline currents of the sensors. It was found that sensitivity increased approximately twofold when the relative humidity was raised from 20% to 40% in the presence of 14% toluene vapor. A comprehensive evaluation of the sensing performance indicated that the Fe2O3 film offers promising potential as a sensing element for the detection of toluene (C7H8) vapor, even at relatively high humidity levels at room temperature. The adsorption kinetics of toluene and carbon tetrachloride (CCl4) vapors on Fe2O3 were modeled using the Pseudo-first-order equation, as well as the Elovich and Ritchie models, and the key parameters of each model were determined and analyzed. Results from regression analysis indicated that the sensing performance and adsorption kinetics are dependent on the molecular structure of the analyte molecules. The Elovich model was found to be to describe the adsorption kinetics of the CCl4 on Fe2O3. On the other hand, first-order equation most accurately described the adsorption kinetics of C7H8 vapors on the Fe2O3 thin film, The Elovich and Ritchie’s kinetics models were not satisfactory.

References

  • S.-K. Song, Z.-H. Shon, Y.-H. Kang, K.-H. Kim, S.-B. Han, M. Kang, J.-H. Bang, I. Oh, “Source apportionment of VOCs and their impact on air quality and health in the megacity of Seoul,” Environmental Pollution, Vol. 247, pp. 763-777, 2019.
  • Z. F. Zhang, X. Zhang, X. Zhang, L.Y. Liu, Y. F. Li, W. Sun, “Indoor occurrence and health risk of formaldehyde, toluene, xylene and total volatile organic compounds derived from an extensive monitoring campaign in Harbin, a megacity of China,” Chemosphere, vol. 250, 126324, 2020.
  • M. L. Boeglin, D. Wessels, D. Henshel, “An investigation of the relationship between air emissions of volatile organic compounds and the incidence of cancer in Indiana counties,” Environmental Research, vol. 100, no. 2, pp. 242-54, 2006.
  • C. Xing, C. Liu, J. Lin, W. Tan, T. Liu, “VOCs hyperspectral imaging: A new insight into evaluate emissions and the corresponding health risk from industries,” Journal of Hazardous Materials, vol. 461, 132573, 2024.
  • J. P. Sá, M. C. M. Alvim-Ferraz, F. G. Martins, S. I. V. Sousa, “Application of the low-cost sensing technology for indoor air quality monitoring: A review,” Environmental Technology & Innovation, vol. 28, 102551, 2022.
  • M. Lueno, H. Dobrowolny, D. Gescher, L. Gbaoui, G. Meyer-Lotz, C. Hoeschen, T. Frodl, “Volatile Organic Compounds From Breath Differ Between Patients With Major Depression and Healthy Controls.” Frontiers in Psychiatry, vol. 13, 819607, 2022.
  • J. E. Belizário, J. Faintuch, M. G. Malpartida, “Breath Biopsy and Discovery of Exclusive Volatile Organic Compounds for Diagnosis of Infectious Diseases,” Frontiers in Cellular and Infection Microbiology, vol. 10, 564194, 2021.
  • E. Bonah, X. Huang, J. H. Aheto, R. Osae, “Application of electronic nose as a non-invasive technique for odor fingerprinting and detection of bacterial foodborne pathogens: a review,” Journal of Food Science and Technology, vol. 57, no. 6, pp. 1977-1990, 2020.
  • K. Karuppasamy, B. Sharma, D. Vikraman, E.-B. Jo, P. Sivakumar, H.-S. Kim, “Switchable p-n gas response for 3D-hierarchical NiFe2O4 porous microspheres for highly selective and sensitive toluene gas sensors,” Journal of Alloys and Compounds, vol. 886, 161281, 2021.
  • K. Zhan, Y. Xing, Y. Zhu, J. Yan, Y. Chen, “Carbon tetrachloride vapor sensing based on ZIF-8@ZnO/TiO2 one-dimensional top-defect photonic crystals,” Sensors and Actuators, A: Physical, vol. 314, 112249, 2020.
  • T. Wang, S. Liu, P. Sun, Y. Wang, K. Shimanoe, G. Lu, “Unexpected and enhanced electrostatic adsorption capacity of oxygen vacancy-rich cobalt-doped In2O3 for high-sensitive MEMS toluene sensor.” Sensors and Actuators, B: Chemical, vol. 342, 129949, 2021.
  • R. Zhang, S. Gao, T. Zhou, J. Tu, T. Zhang, “Facile preparation of hierarchical structure based on p-type Co3O4 as toluene detecting sensor,” Applied Surface Science, vol. 503, 144167, 2020.
  • Y. Sun, Z. Zhao, K. Suematsu, W. Zhang, S. Zhuiykov, K. Shimanoe, J. Hu, “MOF-derived Au-NiO/In2O3 for selective and fast detection of toluene at ppb-level in high humid environments.” Sensors and Actuators, B: Chemical, vol. 360, 131631, 2022.
  • T. Liu, Z. Yu, Y. Liu, J. Gao, X. Wang, H. Suo, X. Yang, C. Zhao, F. Liu, “Gas sensor based on Ni foam: SnO2-decorated NiO for Toluene detection,” Sensors and Actuators, B: Chemical, vol. 318, 128167, 2020.
  • J. H. Bulter, M. Battle, M. L. Bender, S. A. Montzka, A. D. Clarke, E. S. Saltzman, C. M. Sucher, J. P. Severinghaus, J. W. Elkins, “A Record of Atmospheric Halocarbons During The Twentieth Century From Polar Firn Air,” Nature, vol. 399, pp. 749-755, 1999.
  • J. Li, Y. L. Dong, J. Li, “Construction of a new ZnII coordination polymer for selective fluorescence sensing of CCl4,” Australian Journal of Chemistry, vol. 69, no. 1, p. 56, 2016.
  • C. Wei-Ni, Y. Zi-Cheng, C. Shen-Hui, Z. Ying-Tong, X. Guo-Bin, D. Dan-Dan, S. Xin, Z. Peng, W. Man-Man, H. Bin, Chinese Journal of Analytical Chemistry, vol. 50, p. 445, 2022.
  • S. Acharyya, S. Nag, S. Kimbahune, A. Ghose, A. Pal, P. K. Guha, “Selective Discrimination of VOCs Applying Gas Sensing Kinetic Analysis over a Metal Oxide-Based Chemiresistive Gas Sensor,” ACS Sensors vol. 6, no. 6, pp. 2218-2224, 2021.
  • R. A. B. John, A. R. Kumar, “A review on resistive-based gas sensors for the detection of volatile organic compounds using metal-oxide nanostructures,” Inorganic Chemistry Communications, vol. 133, 108893, 2021.
  • G. C. Rezende, S. Le Calvé, J. J. Brandner, D. Newport, “Micro photoionization detectors,” Sensors and Actuators, B: Chemical, vol. 287, pp. 86-94, 2019.
  • H. Shan, C. Liu, L. Liu, J. Zhang, H. Li, Z. Liu, X. Zhang, X. Bo, X. Chi, “Excellent Toluene Sensing Properties of SnO2−Fe2O3 Interconnected Nanotubes,” ACS Applied Materials & Interfaces, vol. 5, pp. 6376-6380, 2013.
  • L. Huo, Q. Li, H. Zhao, L. Yu, S. Gao, J. Zhao, “Sol–gel route to pseudocubic shaped Fe2O3 alcohol sensor: preparation and characterization,” Sensors and Actuators, B: vol. 107, pp. 915-920, 2005.
  • W. Y. Chung, D. D. Lee, “Characteristics of -Fe2O3 Thick Film Gas Sensors,” Thin Solid Films, vol. 200, pp. 329-39, 1991.
  • Y. Nakatani, M. Matsuoka, “Enhancement of Gas Sensitivity by Controlling Microstructure of a-Fe2O3 Ceramics,” Japanese Journal of Applied Physics, vol. 22, pp. 912-6, 1983.
  • P. V. Adhyapak, U. P. Mulik, D. P. Amalnerkar, I. S. Mulla, “Low Temperature Synthesis of Needle-like a-FeOOH and Their Conversion into -Fe2O3 Nanorods for Humidity Sensing Application,” Journal of the American Ceramic Society, vol. 96, p. 731-735, 2013.
  • W. Geng, S. Ge, X. He, S. Zhang, J. Gu, X. Lai, H. Wang, Q. Zhang, “Volatile organic compound gas- sensing properties of bimodal porous α-Fe2O3 with ultrahigh sensitivity and fast response,” ACS Applied Materials & Interfaces, vol. 10, no. 16, pp. 13702-13711, 2018.
  • M. Khan, M. Hussain, S. Crispi, S. Rafique R. Akram, G. Nerib, “Effects of Fe2O3 on the magnetic and gas sensing propertie sof Co3O4 nanoparticles,” Next Materials, vol. 7, pages 100338, 2025.
  • S. Lee, H. Won Jang, “α-Fe2O3 nanostructure-based gas sensors,” Journal of Sensor Science and Technology, vol. 30, pp. 210-217, 2021.
  • L. Liu, S. Fu, X. Lv, L. Yue, L. Fan, H. Yu, X. Gao, W. Zhu, W. Zhang, X. Li, W. Zhu, “A Gas Sensor With Fe2O3 Nanospheres Based on Trimethylamine Detection for the Rapid Assessment of Spoilage Degree in Fish,” Frontiers in Bioengineering and Biotechnology, vol. 8, 2020.
  • S. Vallejos, I. Gracia, Jaromır Hubalek, C. Cane, “VOC-sensitive structures with nanoscale heterojunctions based on WO3-x nanoneedles and Fe2O3 nanoparticles,” Monatshefte für Chemie-Chemical, vol.148, pp. 1921-1927, 2017.
  • R. Belkhedkar, A. U. Ubale, “Preparation and Characterization of Nanocrystalline α-Fe2O3 Thin Films Grown by Successive Ionic Layer Adsorption and Reaction Method,” International Journal of Materials and Chemistry, vol. 4, no.5, pp. 109-116, 2014.
  • S. Gümrükçü, Y. Urfa, A. Altındal, M. İ. Katı, S. Akyürekli, A. Gül, Y. Şahin, İ. Özçeşmeci, “The effect of metal type and gamma irradiation doses on the VOC detection performance of new 1,3- bis(2-pyridylamino) isoindoline complexes”, Journal of Molecular Structure, vol. 1318, 139235, 2024.
  • G. Neri, A. Bonavita, S. Galvagno, N. Donato, A. Caddemi, “Electrical characterization of Fe2O3 humidity sensors doped with Li+, Zn2+ and Au3+ ions,” Sensors and Actuators, B: Chemical, 111-112 (SUPPL.), pp. 71-77, 2005.
  • N. Barsan, U. Weimar, “Conduction model of metal oxide gas sensors,” Journal of Electroceramics, vol. 7, pp. 143–167, 2001.
  • A. G. Ritchie, “Alternative to the Elovich equation for the kinetics of adsorption of gases on solids,” Journal of the Chemical Society, Faraday Transactions 1: Physical, vol. 73, pp. 1650-1653, 1977.
  • M. J. D. Low, “Kinetics of chemisorption of gases on solids,” Chemical Reviews, 60, pp. 267-307, 1960.
  • S. H. Chien, W. R. Clayton, “Application of Elovich Equation to the Kinetics of Phosphate Release and Sorption in Soils.” Soil Science Society of America Journal, vol. 44, pp. 265-268, 1980.
Year 2025, Volume: 29 Issue: 2, 140 - 150
https://doi.org/10.16984/saufenbilder.1582286

Abstract

References

  • S.-K. Song, Z.-H. Shon, Y.-H. Kang, K.-H. Kim, S.-B. Han, M. Kang, J.-H. Bang, I. Oh, “Source apportionment of VOCs and their impact on air quality and health in the megacity of Seoul,” Environmental Pollution, Vol. 247, pp. 763-777, 2019.
  • Z. F. Zhang, X. Zhang, X. Zhang, L.Y. Liu, Y. F. Li, W. Sun, “Indoor occurrence and health risk of formaldehyde, toluene, xylene and total volatile organic compounds derived from an extensive monitoring campaign in Harbin, a megacity of China,” Chemosphere, vol. 250, 126324, 2020.
  • M. L. Boeglin, D. Wessels, D. Henshel, “An investigation of the relationship between air emissions of volatile organic compounds and the incidence of cancer in Indiana counties,” Environmental Research, vol. 100, no. 2, pp. 242-54, 2006.
  • C. Xing, C. Liu, J. Lin, W. Tan, T. Liu, “VOCs hyperspectral imaging: A new insight into evaluate emissions and the corresponding health risk from industries,” Journal of Hazardous Materials, vol. 461, 132573, 2024.
  • J. P. Sá, M. C. M. Alvim-Ferraz, F. G. Martins, S. I. V. Sousa, “Application of the low-cost sensing technology for indoor air quality monitoring: A review,” Environmental Technology & Innovation, vol. 28, 102551, 2022.
  • M. Lueno, H. Dobrowolny, D. Gescher, L. Gbaoui, G. Meyer-Lotz, C. Hoeschen, T. Frodl, “Volatile Organic Compounds From Breath Differ Between Patients With Major Depression and Healthy Controls.” Frontiers in Psychiatry, vol. 13, 819607, 2022.
  • J. E. Belizário, J. Faintuch, M. G. Malpartida, “Breath Biopsy and Discovery of Exclusive Volatile Organic Compounds for Diagnosis of Infectious Diseases,” Frontiers in Cellular and Infection Microbiology, vol. 10, 564194, 2021.
  • E. Bonah, X. Huang, J. H. Aheto, R. Osae, “Application of electronic nose as a non-invasive technique for odor fingerprinting and detection of bacterial foodborne pathogens: a review,” Journal of Food Science and Technology, vol. 57, no. 6, pp. 1977-1990, 2020.
  • K. Karuppasamy, B. Sharma, D. Vikraman, E.-B. Jo, P. Sivakumar, H.-S. Kim, “Switchable p-n gas response for 3D-hierarchical NiFe2O4 porous microspheres for highly selective and sensitive toluene gas sensors,” Journal of Alloys and Compounds, vol. 886, 161281, 2021.
  • K. Zhan, Y. Xing, Y. Zhu, J. Yan, Y. Chen, “Carbon tetrachloride vapor sensing based on ZIF-8@ZnO/TiO2 one-dimensional top-defect photonic crystals,” Sensors and Actuators, A: Physical, vol. 314, 112249, 2020.
  • T. Wang, S. Liu, P. Sun, Y. Wang, K. Shimanoe, G. Lu, “Unexpected and enhanced electrostatic adsorption capacity of oxygen vacancy-rich cobalt-doped In2O3 for high-sensitive MEMS toluene sensor.” Sensors and Actuators, B: Chemical, vol. 342, 129949, 2021.
  • R. Zhang, S. Gao, T. Zhou, J. Tu, T. Zhang, “Facile preparation of hierarchical structure based on p-type Co3O4 as toluene detecting sensor,” Applied Surface Science, vol. 503, 144167, 2020.
  • Y. Sun, Z. Zhao, K. Suematsu, W. Zhang, S. Zhuiykov, K. Shimanoe, J. Hu, “MOF-derived Au-NiO/In2O3 for selective and fast detection of toluene at ppb-level in high humid environments.” Sensors and Actuators, B: Chemical, vol. 360, 131631, 2022.
  • T. Liu, Z. Yu, Y. Liu, J. Gao, X. Wang, H. Suo, X. Yang, C. Zhao, F. Liu, “Gas sensor based on Ni foam: SnO2-decorated NiO for Toluene detection,” Sensors and Actuators, B: Chemical, vol. 318, 128167, 2020.
  • J. H. Bulter, M. Battle, M. L. Bender, S. A. Montzka, A. D. Clarke, E. S. Saltzman, C. M. Sucher, J. P. Severinghaus, J. W. Elkins, “A Record of Atmospheric Halocarbons During The Twentieth Century From Polar Firn Air,” Nature, vol. 399, pp. 749-755, 1999.
  • J. Li, Y. L. Dong, J. Li, “Construction of a new ZnII coordination polymer for selective fluorescence sensing of CCl4,” Australian Journal of Chemistry, vol. 69, no. 1, p. 56, 2016.
  • C. Wei-Ni, Y. Zi-Cheng, C. Shen-Hui, Z. Ying-Tong, X. Guo-Bin, D. Dan-Dan, S. Xin, Z. Peng, W. Man-Man, H. Bin, Chinese Journal of Analytical Chemistry, vol. 50, p. 445, 2022.
  • S. Acharyya, S. Nag, S. Kimbahune, A. Ghose, A. Pal, P. K. Guha, “Selective Discrimination of VOCs Applying Gas Sensing Kinetic Analysis over a Metal Oxide-Based Chemiresistive Gas Sensor,” ACS Sensors vol. 6, no. 6, pp. 2218-2224, 2021.
  • R. A. B. John, A. R. Kumar, “A review on resistive-based gas sensors for the detection of volatile organic compounds using metal-oxide nanostructures,” Inorganic Chemistry Communications, vol. 133, 108893, 2021.
  • G. C. Rezende, S. Le Calvé, J. J. Brandner, D. Newport, “Micro photoionization detectors,” Sensors and Actuators, B: Chemical, vol. 287, pp. 86-94, 2019.
  • H. Shan, C. Liu, L. Liu, J. Zhang, H. Li, Z. Liu, X. Zhang, X. Bo, X. Chi, “Excellent Toluene Sensing Properties of SnO2−Fe2O3 Interconnected Nanotubes,” ACS Applied Materials & Interfaces, vol. 5, pp. 6376-6380, 2013.
  • L. Huo, Q. Li, H. Zhao, L. Yu, S. Gao, J. Zhao, “Sol–gel route to pseudocubic shaped Fe2O3 alcohol sensor: preparation and characterization,” Sensors and Actuators, B: vol. 107, pp. 915-920, 2005.
  • W. Y. Chung, D. D. Lee, “Characteristics of -Fe2O3 Thick Film Gas Sensors,” Thin Solid Films, vol. 200, pp. 329-39, 1991.
  • Y. Nakatani, M. Matsuoka, “Enhancement of Gas Sensitivity by Controlling Microstructure of a-Fe2O3 Ceramics,” Japanese Journal of Applied Physics, vol. 22, pp. 912-6, 1983.
  • P. V. Adhyapak, U. P. Mulik, D. P. Amalnerkar, I. S. Mulla, “Low Temperature Synthesis of Needle-like a-FeOOH and Their Conversion into -Fe2O3 Nanorods for Humidity Sensing Application,” Journal of the American Ceramic Society, vol. 96, p. 731-735, 2013.
  • W. Geng, S. Ge, X. He, S. Zhang, J. Gu, X. Lai, H. Wang, Q. Zhang, “Volatile organic compound gas- sensing properties of bimodal porous α-Fe2O3 with ultrahigh sensitivity and fast response,” ACS Applied Materials & Interfaces, vol. 10, no. 16, pp. 13702-13711, 2018.
  • M. Khan, M. Hussain, S. Crispi, S. Rafique R. Akram, G. Nerib, “Effects of Fe2O3 on the magnetic and gas sensing propertie sof Co3O4 nanoparticles,” Next Materials, vol. 7, pages 100338, 2025.
  • S. Lee, H. Won Jang, “α-Fe2O3 nanostructure-based gas sensors,” Journal of Sensor Science and Technology, vol. 30, pp. 210-217, 2021.
  • L. Liu, S. Fu, X. Lv, L. Yue, L. Fan, H. Yu, X. Gao, W. Zhu, W. Zhang, X. Li, W. Zhu, “A Gas Sensor With Fe2O3 Nanospheres Based on Trimethylamine Detection for the Rapid Assessment of Spoilage Degree in Fish,” Frontiers in Bioengineering and Biotechnology, vol. 8, 2020.
  • S. Vallejos, I. Gracia, Jaromır Hubalek, C. Cane, “VOC-sensitive structures with nanoscale heterojunctions based on WO3-x nanoneedles and Fe2O3 nanoparticles,” Monatshefte für Chemie-Chemical, vol.148, pp. 1921-1927, 2017.
  • R. Belkhedkar, A. U. Ubale, “Preparation and Characterization of Nanocrystalline α-Fe2O3 Thin Films Grown by Successive Ionic Layer Adsorption and Reaction Method,” International Journal of Materials and Chemistry, vol. 4, no.5, pp. 109-116, 2014.
  • S. Gümrükçü, Y. Urfa, A. Altındal, M. İ. Katı, S. Akyürekli, A. Gül, Y. Şahin, İ. Özçeşmeci, “The effect of metal type and gamma irradiation doses on the VOC detection performance of new 1,3- bis(2-pyridylamino) isoindoline complexes”, Journal of Molecular Structure, vol. 1318, 139235, 2024.
  • G. Neri, A. Bonavita, S. Galvagno, N. Donato, A. Caddemi, “Electrical characterization of Fe2O3 humidity sensors doped with Li+, Zn2+ and Au3+ ions,” Sensors and Actuators, B: Chemical, 111-112 (SUPPL.), pp. 71-77, 2005.
  • N. Barsan, U. Weimar, “Conduction model of metal oxide gas sensors,” Journal of Electroceramics, vol. 7, pp. 143–167, 2001.
  • A. G. Ritchie, “Alternative to the Elovich equation for the kinetics of adsorption of gases on solids,” Journal of the Chemical Society, Faraday Transactions 1: Physical, vol. 73, pp. 1650-1653, 1977.
  • M. J. D. Low, “Kinetics of chemisorption of gases on solids,” Chemical Reviews, 60, pp. 267-307, 1960.
  • S. H. Chien, W. R. Clayton, “Application of Elovich Equation to the Kinetics of Phosphate Release and Sorption in Soils.” Soil Science Society of America Journal, vol. 44, pp. 265-268, 1980.
There are 37 citations in total.

Details

Primary Language English
Subjects Structural Properties of Condensed Matter
Journal Section Research Articles
Authors

Nursel Can 0000-0002-1963-7189

Early Pub Date April 15, 2025
Publication Date
Submission Date November 9, 2024
Acceptance Date February 25, 2025
Published in Issue Year 2025 Volume: 29 Issue: 2

Cite

APA Can, N. (2025). Humidity Effect on Adsorption Kinetics of Aromatic and Chlorinated Hydrocarbon Vapors onto Fe2O3 Thin Film. Sakarya University Journal of Science, 29(2), 140-150. https://doi.org/10.16984/saufenbilder.1582286
AMA Can N. Humidity Effect on Adsorption Kinetics of Aromatic and Chlorinated Hydrocarbon Vapors onto Fe2O3 Thin Film. SAUJS. April 2025;29(2):140-150. doi:10.16984/saufenbilder.1582286
Chicago Can, Nursel. “Humidity Effect on Adsorption Kinetics of Aromatic and Chlorinated Hydrocarbon Vapors onto Fe2O3 Thin Film”. Sakarya University Journal of Science 29, no. 2 (April 2025): 140-50. https://doi.org/10.16984/saufenbilder.1582286.
EndNote Can N (April 1, 2025) Humidity Effect on Adsorption Kinetics of Aromatic and Chlorinated Hydrocarbon Vapors onto Fe2O3 Thin Film. Sakarya University Journal of Science 29 2 140–150.
IEEE N. Can, “Humidity Effect on Adsorption Kinetics of Aromatic and Chlorinated Hydrocarbon Vapors onto Fe2O3 Thin Film”, SAUJS, vol. 29, no. 2, pp. 140–150, 2025, doi: 10.16984/saufenbilder.1582286.
ISNAD Can, Nursel. “Humidity Effect on Adsorption Kinetics of Aromatic and Chlorinated Hydrocarbon Vapors onto Fe2O3 Thin Film”. Sakarya University Journal of Science 29/2 (April 2025), 140-150. https://doi.org/10.16984/saufenbilder.1582286.
JAMA Can N. Humidity Effect on Adsorption Kinetics of Aromatic and Chlorinated Hydrocarbon Vapors onto Fe2O3 Thin Film. SAUJS. 2025;29:140–150.
MLA Can, Nursel. “Humidity Effect on Adsorption Kinetics of Aromatic and Chlorinated Hydrocarbon Vapors onto Fe2O3 Thin Film”. Sakarya University Journal of Science, vol. 29, no. 2, 2025, pp. 140-5, doi:10.16984/saufenbilder.1582286.
Vancouver Can N. Humidity Effect on Adsorption Kinetics of Aromatic and Chlorinated Hydrocarbon Vapors onto Fe2O3 Thin Film. SAUJS. 2025;29(2):140-5.


INDEXING & ABSTRACTING & ARCHIVING

33418 33537  30939     30940 30943 30941  30942  33255  33252  33253  33254

30944  30945  30946




30930Bu eser Creative Commons Atıf-Ticari Olmayan 4.0 Uluslararası Lisans   kapsamında lisanslanmıştır .