Araştırma Makalesi
BibTex RIS Kaynak Göster

Tek Bir Seansta Zirve Oksijen Kullanım Düzeyini Veren En Yüksek Güç Çıktısını Tahmin Etmenin Basit Bir Yöntemi

Yıl 2019, Cilt: 30 Sayı: 4, 168 - 176, 07.01.2020
https://doi.org/10.17644/sbd.606182

Öz

Zirve
O2 tüketim düzeyi (
 
VO2pik) veren en yüksek güç çıktısı (aerobik limit güç; ALG)
şiddetli ve aşırı egzersiz alanlarını ayıran önemli bir eşiktir ve sporcularda
bireysel bir ALG belirleyebilmek için çok sayıda sabit yüklü tüketici test
yapmak gerekmektedir. Bu çalışmanın amacı; sporcuların ALG’lerini tek bir
seansta belirleyebilecek bir yaklaşım önermektir. Araştırmaya iyi antrene 12
bisiklet sporcusu katılmıştır ( 
VO2maks64,7±4,2 mL∙dk-1∙kg-1; Zirve
Güç (ZG): 374,1±65,7 W).
VO2pik düzeyinin belirlenmesi için lineer yük artışlı (ramp)
testler uygulatılmıştır (+1 W·2 s-1) ve protokollerin sonunda
ulaşılan final güç üretim değerleri (FG) ortalama yanıt zamanı (
mean response time: MRT) düzeltmesi uygulanmadan (FGMRT) ve uygulanarak
(
FGMRT) değerlendirilmiştir. Sporcuların 
VO2maks’ı ve bu değeri veren ZG değerleri, doğrulama testleri
uygulanarak bulunmuştur. Devamında sporcuların ALG (
VO2maks’a %5’ten daha yakın VO2 değeri veren en yüksek güç çıktısı) değerleri, 15 W’lık
intervallerle bitkinlikle sonlanan sabit yüklü testler yoluyla ayrı günlerde
taranmıştır. 
FGMRT ile ALG değerleri arasındaki fark anlamlı
değildir (
FGMRT: 435,2±50,8; ALG: 435,4±62,5 W, p=0,968).
Bland-Altman sonuçları yüksek uyum göstermiştir
(Bias=0,20±17,6 W; p=0,968). FGMRT,
gerçek ZG’nin %117,5±8,8’ine karşılık gelirken, belirlenen ALG değeri ZG’nin
%117,1±7,37’sine karşılık gelmiştir (p=0,759). Diğer yandan ramp testinden elde
edilen en yüksek 15-s 
VO2 ortalamaları da ALG yükündeki VOyanıtlarıyla benzerdir ( Ramp Test: 62,3±4,9 ml∙dk-1∙kg-1,
%96,2; ALG: 61,5±4,3 ml∙dk-1∙kg-1, %95; p=0,119 ). Sonuç
olarak, ALG’yi belirleyebilmek için ayrı günlerde çok sayıda bitkinlikle
sonlanan test yapmak yerine, tek seansta bir ramp test uygulamasının 
VO2maks’ı düşük tahmin ettiği ancak ALG’yi ve bu değere
karşılık gelen 
VOyanıtını belirleyebilmenin oldukça pratik bir yöntemi
olabileceği bulunmuştur.

Destekleyen Kurum

Ege Üniversitesi Bilimsel Araştırma Projeler Koordinatörlüğü

Proje Numarası

17-BESYO-002

Kaynakça

  • Åstrand PO, Rodahl K. (1977). Textbook of work physiology: physiological bases of exercise. (2th Edition) New York: McGraw-Hill Book Company.
  • Atkinson G, Nevill AM. (1998). Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Medicine, 26(4),217–38.
  • Billat VL, Slawinski J, Bocquet V, Demarle A, Lafitte L, Chassaing P, vd. (2000). Intermittent runs at the velocity associated with maximal oxygen uptake enables subjects to remain at maximal oxygen uptake for a longer time than intense but submaximal runs. European Journal of Applied Physiology, 81(3),188–96.
  • Black MI, Jones AM, Bailey SJ, Vanhatalo A. (2015). Self-pacing increases critical power and improves performance during severe-intensity exercise. Applied physiology, nutrition, and metabolism, 40(7),662–70.
  • Bland JM, Altman DG. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet, 327(8476),307–10.
  • Boone J, Koppo K, Bouckaert J. (2008). The VO2 response to submaximal ramp cycle exercise: Influence of ramp slope and training status. Respiratory physiology & neurobiology, 161(3),291–7.
  • Buchheit M, Laursen PB. (2013). High-Intensity interval training, solutions to the programming puzzle. Sports medicine, 43(5),313–38.
  • Caputo F, Denadai BS. (2008). The highest intensity and the shortest duration permitting attainment of maximal oxygen uptake during cycling: effects of different methods and aerobic fitness level. European Journal of Applied Physiology, 103(1),47–57.
  • Colakoglu M, Ozkaya O, Balci GA, Yapicioglu B. (2016). Stroke volume responses may be related to the gap between peak and maximal O2consumption. Isokinetics and Exercise Science, 24(2),133–9.
  • de Aguiar RA, Turnes T, de Oliveira Cruz RS, Caputo F. (2013). Fast-start strategy increases the time spent above 95 %VO2max during severe-intensity intermittent running exercise. European journal of applied physiology, 113(4),941–9.
  • Dupont G, Blondel N, Lensel G, Berthoin S. (2002). Critical velocity and time spent at a high level of VO2 for short intermittent runs at supramaximal velocities. Canadian journal of applied physiology, 27(2),103–15.
  • Gaesser GA, Poole DC. (1996). The slow component of oxygen uptake kinetics in humans. Exercise and sport sciences reviews, 24(1),35–71.
  • Hill D, Williams C, Burg S. (1997). Responses to exercise at 92 % and 100 % of the velocity associated with VO2max. International journal of sports medicine, 18(5),325–9.
  • Hill DW, Poole DC, Smith JC. (2002). The relationship between power and the time to achieve VO2max. Medicine and science in sports and exercise, 34(4),709–14.
  • Hill DW, Stevens EC. (2005). VO2 response profiles in severe intensity exercise. The Journal of sports medicine and physical fitness, 45(3),239–47.
  • Jones AM, Vanhatalo A, Burnley M, Morton RH, Poole DC. (2010). Critical power: implications for determination of VO2max and exercise tolerance. Medicine and science in sports and exercise, 42(10),1876–90.
  • Leo JA, Sabapathy S, Simmonds MJ, Cross TJ. (2017). The respiratory compensation point is not a valid surrogate for critical power. Medicine and science in sports and exercise, 49(7),1452–60.
  • Lepretre P-M, Koralsztein J-P, Billat VL. (2004). Effect of exercise intensity on relationship between VO2max and cardiac output. Medicine and science in sports and exercise, 36(8),1357–63.
  • Raimundo JAG, Turnes T, de Aguiar RA, Lisbôa FD, Loch T, Ribeiro G, vd. (2019). The severe exercise domain amplitude: a comparison between endurance runners and cyclists. Research Quarterly for Exercise and Sport, 90(1),3–13.
  • Turnes T, de Aguiar RA, de Oliveira Cruz RS, Lisbôa FD, Pereira KL, Caputo F. (2016). Short‑term interval training at both lower and higher intensities in the severe exercise domain result in improvements in on‑kinetics. European Journal of Applied Physiology, 116(10),1975–84.
  • Turnes T, de Aguiar R, de Oliveira Cruz R, Pereira K, Salvador A, Caputo F. (2016). High-intensity ınterval training in the boundaries of the severe domain: effects on sprint and endurance performance. International Journal of Sports Medicine, 37(12),944–51.
  • Wakefield BR, Glaister M. (2009). Influence of work-interval intensity and duration on time spent at a high percentage of VO2max during intermittent supramaximal exercise. Journal of strength and conditioning research, 23(9),2548–54.

A Simple Method to Predict the Highest Power Output to Elicit Peak Oxygen Consumption in a Single Session

Yıl 2019, Cilt: 30 Sayı: 4, 168 - 176, 07.01.2020
https://doi.org/10.17644/sbd.606182

Öz

Although the highest power output to elicit
peak O
2 consumption (
VO2peak)(aerobic
limit power; ALP) is an important boundary which separates severe and extreme
exercise domain and it needs several constant-load tests to estimate an
athlete’s individual ALP. The purpose of this study was to suggest an approach
to predict the athletes’ ALP in a single test session. 12 well-trained cyclists (
VO2max:
64.7±4.1 mL∙min-1∙kg-1 and peak power output (PPO):
374.1±65.7 W) volunteered for this investigation. Ramp incremental test was
performed (+1 W·2 s-1) to determine 
VO2peak, and the
final power output at the end of the test (FP) was evaluated with and without
mean response time correction (
FPMRT and FPMRT, respectively). Constant-load exercises were performed to identify VO2max and PPO. Then, athletes’ ALP (the highest power output giving a VO2 value closer to VO2max more than 5%) levels were detected by 15-W intervals with constant-load exercises in separate days. Difference between FPMRT and ALP was not significant (435.2±50.8 vs. 435.4±62.5 W, p=0.968, respectively). Bland Altman showed high agreement between the methods (Bias=–0,20±17,6 W; p=0.968). FPMRT was corresponded to 117.7±8.8% of PPO, while ALP was corresponded to 117.1±7.37% of PPO (p=0.00). The highest 15-s VO2 means revealed from ramp incremental test were similar to VO2 responses obtained from the ALP (62.3±4.9 vs. 61.5±4.3 mL∙min-1∙kg-1; p=0.119; and 96.2% vs. 95% VO2max, respectively). In conclusion, instead of several exhausted test sessions in separate days, a ramp incremental test which underestimates the VO2max may be a practical method to predict the ALP and its VO2 response in a single test session by a ramp incremental test. 

Proje Numarası

17-BESYO-002

Kaynakça

  • Åstrand PO, Rodahl K. (1977). Textbook of work physiology: physiological bases of exercise. (2th Edition) New York: McGraw-Hill Book Company.
  • Atkinson G, Nevill AM. (1998). Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Medicine, 26(4),217–38.
  • Billat VL, Slawinski J, Bocquet V, Demarle A, Lafitte L, Chassaing P, vd. (2000). Intermittent runs at the velocity associated with maximal oxygen uptake enables subjects to remain at maximal oxygen uptake for a longer time than intense but submaximal runs. European Journal of Applied Physiology, 81(3),188–96.
  • Black MI, Jones AM, Bailey SJ, Vanhatalo A. (2015). Self-pacing increases critical power and improves performance during severe-intensity exercise. Applied physiology, nutrition, and metabolism, 40(7),662–70.
  • Bland JM, Altman DG. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet, 327(8476),307–10.
  • Boone J, Koppo K, Bouckaert J. (2008). The VO2 response to submaximal ramp cycle exercise: Influence of ramp slope and training status. Respiratory physiology & neurobiology, 161(3),291–7.
  • Buchheit M, Laursen PB. (2013). High-Intensity interval training, solutions to the programming puzzle. Sports medicine, 43(5),313–38.
  • Caputo F, Denadai BS. (2008). The highest intensity and the shortest duration permitting attainment of maximal oxygen uptake during cycling: effects of different methods and aerobic fitness level. European Journal of Applied Physiology, 103(1),47–57.
  • Colakoglu M, Ozkaya O, Balci GA, Yapicioglu B. (2016). Stroke volume responses may be related to the gap between peak and maximal O2consumption. Isokinetics and Exercise Science, 24(2),133–9.
  • de Aguiar RA, Turnes T, de Oliveira Cruz RS, Caputo F. (2013). Fast-start strategy increases the time spent above 95 %VO2max during severe-intensity intermittent running exercise. European journal of applied physiology, 113(4),941–9.
  • Dupont G, Blondel N, Lensel G, Berthoin S. (2002). Critical velocity and time spent at a high level of VO2 for short intermittent runs at supramaximal velocities. Canadian journal of applied physiology, 27(2),103–15.
  • Gaesser GA, Poole DC. (1996). The slow component of oxygen uptake kinetics in humans. Exercise and sport sciences reviews, 24(1),35–71.
  • Hill D, Williams C, Burg S. (1997). Responses to exercise at 92 % and 100 % of the velocity associated with VO2max. International journal of sports medicine, 18(5),325–9.
  • Hill DW, Poole DC, Smith JC. (2002). The relationship between power and the time to achieve VO2max. Medicine and science in sports and exercise, 34(4),709–14.
  • Hill DW, Stevens EC. (2005). VO2 response profiles in severe intensity exercise. The Journal of sports medicine and physical fitness, 45(3),239–47.
  • Jones AM, Vanhatalo A, Burnley M, Morton RH, Poole DC. (2010). Critical power: implications for determination of VO2max and exercise tolerance. Medicine and science in sports and exercise, 42(10),1876–90.
  • Leo JA, Sabapathy S, Simmonds MJ, Cross TJ. (2017). The respiratory compensation point is not a valid surrogate for critical power. Medicine and science in sports and exercise, 49(7),1452–60.
  • Lepretre P-M, Koralsztein J-P, Billat VL. (2004). Effect of exercise intensity on relationship between VO2max and cardiac output. Medicine and science in sports and exercise, 36(8),1357–63.
  • Raimundo JAG, Turnes T, de Aguiar RA, Lisbôa FD, Loch T, Ribeiro G, vd. (2019). The severe exercise domain amplitude: a comparison between endurance runners and cyclists. Research Quarterly for Exercise and Sport, 90(1),3–13.
  • Turnes T, de Aguiar RA, de Oliveira Cruz RS, Lisbôa FD, Pereira KL, Caputo F. (2016). Short‑term interval training at both lower and higher intensities in the severe exercise domain result in improvements in on‑kinetics. European Journal of Applied Physiology, 116(10),1975–84.
  • Turnes T, de Aguiar R, de Oliveira Cruz R, Pereira K, Salvador A, Caputo F. (2016). High-intensity ınterval training in the boundaries of the severe domain: effects on sprint and endurance performance. International Journal of Sports Medicine, 37(12),944–51.
  • Wakefield BR, Glaister M. (2009). Influence of work-interval intensity and duration on time spent at a high percentage of VO2max during intermittent supramaximal exercise. Journal of strength and conditioning research, 23(9),2548–54.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Spor Hekimliği
Bölüm Makaleler
Yazarlar

Özgür Özkaya 0000-0003-4222-5761

Görkem Aybars Balcı Bu kişi benim 0000-0002-5720-1706

Hakan As Bu kişi benim 0000-0002-1848-6251

Refik Çabuk Bu kişi benim 0000-0002-3682-3135

Mahdi Norouzi 0000-0002-0085-2751

Proje Numarası 17-BESYO-002
Yayımlanma Tarihi 7 Ocak 2020
Gönderilme Tarihi 19 Ağustos 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 30 Sayı: 4

Kaynak Göster

APA Özkaya, Ö., Balcı, G. A., As, H., Çabuk, R., vd. (2020). Tek Bir Seansta Zirve Oksijen Kullanım Düzeyini Veren En Yüksek Güç Çıktısını Tahmin Etmenin Basit Bir Yöntemi. Spor Bilimleri Dergisi, 30(4), 168-176. https://doi.org/10.17644/sbd.606182

9551


SPOR BİLİMLERİ DERGİSİ


Yayın hakkı © Hacettepe Üniversitesi Spor Bilimleri Fakültesi