Kültür Minekop Balığının (Umbrina cirrosa Linnaeus, 1758) Radyolojik Risk Değerlendirmesi
Yıl 2019,
Cilt: 14 Sayı: 2, 269 - 275, 30.11.2019
Süleyman Fatih Özmen
,
Mesut Yılmaz
Öz
Bu
çalışmada Muğla bölgesinde yetiştirilen minekop balığının kas dokusunda doğal
radyonüklit (226Ra, 232Th ve 40K)
konsantrasyonları ölçülerek radyolojik risk değerlendirmesi yapılmıştır. Bu
amaçla yetiştiriciliğin yapıldığı çiftlikten porsiyonluk balıklar hasat sonrası
alınarak kas dokuları ayrılmıştır. Numunelerin yüksek çözünürlüklü germanyum
dedektörü ile gama spektrometrik ölçümleri gerçekleştirilmiş ve radyolojik risk
faktörleri hesaplanmıştır. Çiftlikte yetiştirilen minekop balıklarının
yenilebilen kısımlarında 226Ra aktivitesinin 0,63 ile 4,60 Bq
kg-1, 232Th aktivitesinin 0,29- 4,14 Bq
kg-1 ve 40K aktivitesinin 133,19 – 160,57 Bq kg-1 aralığında değiştiği gözlenmiştir.
Örneklerin radyum eşdeğer aktivitesi ve yıllık etkin doz ortalamaları sırasıyla
13,79±0,62 Bq kg-1 ve 4,96±0,07µSv y-1 olarak hesaplanmıştır. Elde edilen
bulgular kültür koşullarında yetiştirilen minekop balıkları için referans
oluşturması bakımından önemlidir.
Teşekkür
Yazarlar olarak, numunelerin gama spektrometrik ölçümleri için araştırma laboratuarını tahsis eden Akdeniz Üniversitesi Fizik Bölümü Öğretim Üyesi Prof. Dr. İsmail BOZTOSUN’a yardım ve desteklerinden dolayı teşekkürü borç biliriz.
Bu araştırma, kamu, ticari ve/veya kar amacı gütmeyen sektörlerdeki finansman kuruluşlarından herhangi bir destek almamıştır.
Sunulan çalışmada kullanılan balıklar hasat sonrası ölü olarak örneklendiğinden herhangi bir etik prosedür izlenmemiştir.
Kaynakça
- [1] B. Basurco, E. Abellan, "Finfish species diversification in the context of Mediterranean marine fish farming development,” in Options Méditerranéennes., No. 24. Marine Finfish Species Diversification; Current Situation and Prospects in Mediterranean Aquaculture. E. Abellan, B. Basurco (eds.). C.I.H.E.A.M., Zaragoza, Spain 1999, pp. 9-25.
- [2] G. Fabi, L. Fiorentini, “Catch and growth of Umbrina cirrosa (L.) around artificial reefs in the Adriatic Sea,” Boll. Oceanol. Teor. Appl., 11, 235-242, 1993.
- [3] P. Cardellini, A. Franceson, S. Zanella, G. Bozzato, P. Benedetti, N. Borgoni, A. Barbaro, “Captive rearing of shi drum, Umbrina cirrosa (L.), in different thermal conditions,” Biol. Mar. Mediterr., 6, 287-290, 1999.
- [4] C.C. Mylonas, G. Georgiou, D. Stephanou, T. Atack, A. Afonso, Y. Zohar, “Preliminary data on the reproductive biology and hatchery production of the shi drum (Umbrina cirrosa) in Cyprus,” in Cahiers Options Méditerranéennes, Mediterranean Marine Aquaculture Finfish Species Diversification, vol. 47, B. Basurco (Ed.). C.I.H.E.A.M., Zaragoza, Spain, 2000, pp. 303-312.
- [5] A. Barbaro, A. Franceson, D. Bertotto, G. Bozzato, I. Di Maria, P. Patarnello, F. Furlan, L. Colombo, “More effective induction of spawning with long-acting GnRH agonist in the shi drum, Umbrina cirrosa L. (Sciaenidae, Teleostei), a valuable candidate for Mediterranean mariculture,” J. Appl. Ichthyol., 18, 192-199, 2002.
- [6] FAO (2019, 16 Temmuz). Fisheries and aquaculture software. FishStatJ - Software for Fishery and Aquaculture Statistical Time Series. In: FAO Fisheries and Aquaculture Department [online]. Available: http://www.fao.org/fishery/statistics/software/fishstatj/en
- [7] E.V.D. Stricht, R. Kirchmann, “ Radioecology, Radioactivity & Ecosystems,” Fortemps, Liège.
- [8] IAEA (International Atomic Energy Agency), “Sediment distribution coefficients and concentration factors for biota in the marine organisms,” IAEA Technical report series, No. 422, Vienna, 2004.
- [9] J. Billa, F. Han, S. Didla, H. Yu, J. Dimpah, O. Brempong, S. Adzanu, “Radioactivity studies on farm raised and wild catfish produced in Mississippi, USA,” J. Radioanal. Nucl. Chem., 307 (1), 203-210, 2016.
- [10] F.K. Görür, R. Keser, N. Akçay, S. Dizman, “Radioactivity and heavy metal concentrations of some commercial fish species consumed in the Black Sea Region of Turkey,” Chemosphere, 87, 356-61, 2012.
- [11] Fishbase (2019, 16 Temmuz). Computer generated distribution maps for Umbrina cirrosa (Shi drum), with modelled year 2100 native range map based on IPCC A2 emissions scenario. www.aquamaps.org, version of Aug. 2016. [Online]. Available: https://www.aquamaps.org/receive.php?type_of_map=regular#.
- [12] G. Yaprak, M.A.A. Aslani, “External dose-rates for natural gamma emitters in soils from an agricultural land in West Anatolia,” J. Radioanal. Nucl. Chem., 283, 279-287, 2010.
- [13] S.F. Ozmen, A.Cesur, I. Boztosun, M. Yavuz, “Distribution of natural and anthropogenic radionuclides in beach sand samples from Mediterranean Coast of Turkey,” Radiat. Phys. Chem., 103, 37-44, 2014.
- [14] J. Beretka, P.J. Mathew, “Natural radioactivity of Australian building materials, industrial wastes and by-products,” Health Phys., 48 (1), 48-87, 1985.
- [15] R. Krieger, “ Radioactivity of construction materials,” Betonw Fertigtl Technol, 47, 468-473, 1985.
- [16] B.B. Bolaji, , D.S. Francis, H. Ibitoruh, “Human health impact of natural and artificial radioactivity levels in the sediments and fish of Bonny estuary, Niger Delta, Nigeria,” Challenges, 6, 244-257, 2015.
- [17] C.C. Goddard, C.P. Mathews, J. Al Mamry, “Baseline radionuclide concentrations in Omani Fish,” Mar. Pollut. Bull., 46, 914–917, 2003.
- [18] S. Tahir, A. Alaamer, M. Ayub, M. Khan, “Radiometric analysis of samples of domestic fish species and radiological implications,” Health Phys., 98(5), 741–744, 2010.
- [19] S. Erenturk, S. Yusan, D.A. Turkozu, Z. Camtakan, M.K. Olgen, M.A.A. Aslani, S. Aytas, M.A. Isik, “Spatial distribution and risk assessment of radioactivity and heavy metal levels of sediment, surface water and fish samples from Lake Van, Turkey,” J. Radioanal. Nucl. Chem., 300 (3), 919-931, 2014.
- [20] UNSCEAR “Sources and effects of ionizing radiation,” Report to General Assembly, with Scientific Annexes, United Nations Scientific Committee on the Effect of Atomic Radiation, 2000.
- [21] ICRP “Compendium of Dose Coefficients based on ICRP Publication 60,” ICRP Publication 119, Annual ICRP 41(Suppl.), 2012.
- [22] BSGM (Balıkçılık ve Su Ürünleri Genel Müdürlüğü) (2019, 6 Mayıs). T.C. Tarım ve Orman Bakanlığı su ürünleri istatistikleri [Online]. Available: https://www.tarimorman.gov.tr/sgb/Belgeler/SagMenuVeriler /BSGM.pdf.
Radiologic Risk Assessment of Farmed Shi Drum (Umbrina cirrosa Linnaeus, 1758)
Yıl 2019,
Cilt: 14 Sayı: 2, 269 - 275, 30.11.2019
Süleyman Fatih Özmen
,
Mesut Yılmaz
Öz
In
this study, natural radionuclide (226Ra, 232Th and 40K) concentrations were measured in edible part of
shi drum grown in Muğla region and radiological risk assessment was performed.
For this purpose, pan size fish were taken from the farm soon after harvesting
and fillets were separated. Gamma spectrometric measurements of samples were
performed with high resolution germanium detector and radiological risk factors
were calculated. It was observed that the activities ranged from 0.63 to 4.60
Bq kg-1 for 226Ra, from 0.29 to 4.14 Bq kg-1 for
232Th and from 133.19 to 160.57 Bq kg-1 for 40K
in edible parts of farmed shi drum. Radium equivalent activity and annual
effective dose averages of the samples were calculated as 13,79 ± 0,62 Bq kg-1
and 4,96 ± 0,07µSv y-1, respectively. The findings are important in
terms of forming database for shi drum grown in culture conditions.
Kaynakça
- [1] B. Basurco, E. Abellan, "Finfish species diversification in the context of Mediterranean marine fish farming development,” in Options Méditerranéennes., No. 24. Marine Finfish Species Diversification; Current Situation and Prospects in Mediterranean Aquaculture. E. Abellan, B. Basurco (eds.). C.I.H.E.A.M., Zaragoza, Spain 1999, pp. 9-25.
- [2] G. Fabi, L. Fiorentini, “Catch and growth of Umbrina cirrosa (L.) around artificial reefs in the Adriatic Sea,” Boll. Oceanol. Teor. Appl., 11, 235-242, 1993.
- [3] P. Cardellini, A. Franceson, S. Zanella, G. Bozzato, P. Benedetti, N. Borgoni, A. Barbaro, “Captive rearing of shi drum, Umbrina cirrosa (L.), in different thermal conditions,” Biol. Mar. Mediterr., 6, 287-290, 1999.
- [4] C.C. Mylonas, G. Georgiou, D. Stephanou, T. Atack, A. Afonso, Y. Zohar, “Preliminary data on the reproductive biology and hatchery production of the shi drum (Umbrina cirrosa) in Cyprus,” in Cahiers Options Méditerranéennes, Mediterranean Marine Aquaculture Finfish Species Diversification, vol. 47, B. Basurco (Ed.). C.I.H.E.A.M., Zaragoza, Spain, 2000, pp. 303-312.
- [5] A. Barbaro, A. Franceson, D. Bertotto, G. Bozzato, I. Di Maria, P. Patarnello, F. Furlan, L. Colombo, “More effective induction of spawning with long-acting GnRH agonist in the shi drum, Umbrina cirrosa L. (Sciaenidae, Teleostei), a valuable candidate for Mediterranean mariculture,” J. Appl. Ichthyol., 18, 192-199, 2002.
- [6] FAO (2019, 16 Temmuz). Fisheries and aquaculture software. FishStatJ - Software for Fishery and Aquaculture Statistical Time Series. In: FAO Fisheries and Aquaculture Department [online]. Available: http://www.fao.org/fishery/statistics/software/fishstatj/en
- [7] E.V.D. Stricht, R. Kirchmann, “ Radioecology, Radioactivity & Ecosystems,” Fortemps, Liège.
- [8] IAEA (International Atomic Energy Agency), “Sediment distribution coefficients and concentration factors for biota in the marine organisms,” IAEA Technical report series, No. 422, Vienna, 2004.
- [9] J. Billa, F. Han, S. Didla, H. Yu, J. Dimpah, O. Brempong, S. Adzanu, “Radioactivity studies on farm raised and wild catfish produced in Mississippi, USA,” J. Radioanal. Nucl. Chem., 307 (1), 203-210, 2016.
- [10] F.K. Görür, R. Keser, N. Akçay, S. Dizman, “Radioactivity and heavy metal concentrations of some commercial fish species consumed in the Black Sea Region of Turkey,” Chemosphere, 87, 356-61, 2012.
- [11] Fishbase (2019, 16 Temmuz). Computer generated distribution maps for Umbrina cirrosa (Shi drum), with modelled year 2100 native range map based on IPCC A2 emissions scenario. www.aquamaps.org, version of Aug. 2016. [Online]. Available: https://www.aquamaps.org/receive.php?type_of_map=regular#.
- [12] G. Yaprak, M.A.A. Aslani, “External dose-rates for natural gamma emitters in soils from an agricultural land in West Anatolia,” J. Radioanal. Nucl. Chem., 283, 279-287, 2010.
- [13] S.F. Ozmen, A.Cesur, I. Boztosun, M. Yavuz, “Distribution of natural and anthropogenic radionuclides in beach sand samples from Mediterranean Coast of Turkey,” Radiat. Phys. Chem., 103, 37-44, 2014.
- [14] J. Beretka, P.J. Mathew, “Natural radioactivity of Australian building materials, industrial wastes and by-products,” Health Phys., 48 (1), 48-87, 1985.
- [15] R. Krieger, “ Radioactivity of construction materials,” Betonw Fertigtl Technol, 47, 468-473, 1985.
- [16] B.B. Bolaji, , D.S. Francis, H. Ibitoruh, “Human health impact of natural and artificial radioactivity levels in the sediments and fish of Bonny estuary, Niger Delta, Nigeria,” Challenges, 6, 244-257, 2015.
- [17] C.C. Goddard, C.P. Mathews, J. Al Mamry, “Baseline radionuclide concentrations in Omani Fish,” Mar. Pollut. Bull., 46, 914–917, 2003.
- [18] S. Tahir, A. Alaamer, M. Ayub, M. Khan, “Radiometric analysis of samples of domestic fish species and radiological implications,” Health Phys., 98(5), 741–744, 2010.
- [19] S. Erenturk, S. Yusan, D.A. Turkozu, Z. Camtakan, M.K. Olgen, M.A.A. Aslani, S. Aytas, M.A. Isik, “Spatial distribution and risk assessment of radioactivity and heavy metal levels of sediment, surface water and fish samples from Lake Van, Turkey,” J. Radioanal. Nucl. Chem., 300 (3), 919-931, 2014.
- [20] UNSCEAR “Sources and effects of ionizing radiation,” Report to General Assembly, with Scientific Annexes, United Nations Scientific Committee on the Effect of Atomic Radiation, 2000.
- [21] ICRP “Compendium of Dose Coefficients based on ICRP Publication 60,” ICRP Publication 119, Annual ICRP 41(Suppl.), 2012.
- [22] BSGM (Balıkçılık ve Su Ürünleri Genel Müdürlüğü) (2019, 6 Mayıs). T.C. Tarım ve Orman Bakanlığı su ürünleri istatistikleri [Online]. Available: https://www.tarimorman.gov.tr/sgb/Belgeler/SagMenuVeriler /BSGM.pdf.