The investor always wants to create a portfolio that will benefit him with the highest benefit. This situation presents the portfolio problem that needs to be optimized. In the literature, quadratic programming method, which is one of the classical optimization methods, is used to solve the portfolio optimization problem. In recent years, it has been observed that artificial intelligence methods give better results. In this study, genetic algorithm method was used for portfolio optimization problem. For the portfolio optimization problem, quadratic programming and genetic algorithm methods were compared in terms of portfolio performance measures. The stocks listed in the BIST-30 index of 2019 were used for comparison. Sharpe ratio and treynor index performance measures were used to evaluate portfolio performance. The goal in both optimization methods; It is the determination of the portfolio with the highest performance measure ratio. As a result of the analysis, it was observed that the genetic algorithm method reached the optimum result according to both portfolio performance measures. treynor index has been determined to form a portfolio with a higher performance measure ratio compared to the sharpe ratio.
Portfolio optimization Genetic Algorithm Sharpe ratio Treynor index
Yatırımcı her zaman kendisine en yüksek faydayı sağlayacak olan portföyü oluşturmak istemektedir. Bu durum optimize edilmesi gereken portföy problemini ortaya çıkartır. Literatürde portföy optimizasyon problemi çözümünde genellikle bir klasik optimizasyon yöntemlerinden biri olan karesel programlama yöntemi kullanılmaktadır. Son yıllarda yapılan çalışmalar incelendiğinde yapay zeka algoritmalarının optimizasyon problemlerinde gösterdiği başarılardan yola çıkarak bu çalışmada genetik algoritma yaklaşımının portföy optimizasyon problemindeki başarısı ölçülmek istenmektedir. Portföy optimizasyon problemi için karesel programlama ile genetik algoritma yöntemleri portföy performans ölçüleri açısından karşılaştırılmıştır. Karşılaştırmada 2019 yılına ait BIST-30 endeksinde işlem gören hisse senetleri kullanılmıştır. Portföy performansını değerlendirmek için sharpe oranı ile treynor endeksi performans ölçüleri iki optimizasyon yönteminde de amaç fonksiyonu olarak kullanılmıştır. İki optimizasyon yönteminde de amaç; en yüksek performans ölçüsü oranına sahip portföyün belirlenmesidir. Yapılan analiz sonucunda genetik algoritma yönteminin her iki portföy performans ölçüsüne göre de optimum sonuca ulaştığı gözlemlenmiş ve treynor endeksinin sharpe oranına göre daha yüksek performans ölçüsü oranına sahip bir portföy oluşturduğu belirlenmiştir.
Portföy Optimizasyonu Genetik Algoritma Sharpe Oranı Treynor endeksi
Birincil Dil | Türkçe |
---|---|
Konular | Matematik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 27 Mayıs 2021 |
Yayımlandığı Sayı | Yıl 2021 Cilt: 16 Sayı: 1 |