Anaerobik Sindirimde Nanopartikül Konsantrasyonunun Cevap Yüzey Yöntemi İle Optimizasyonu
Yıl 2022,
Cilt: 17 Sayı: 1, 209 - 219, 27.05.2022
Halil Şenol
,
Ayhan Kara
,
Selçuk Atasoy
,
Mehtap Erşan
Öz
Son zamanlarda nanopartiküllerin (NP)’lerin anaerobik sindirim (AS)’de biyogaz üretimi üzerinde verim artırmaya yönelik etkilerinin olduğu keşfedilmiştir. Bu çalışmada Fe3O4, ZnO ve SiO2 NP’lerin AS’ye olan etkileri incelenmiştir. Bazı NP’lerin yüksek konsantrasyonları toksik etki yapmaktadır. Bu nedenle substrat olarak kullanılan sığır gübresinin AS’de en iyi NP konsantrasyonlarını bulmak için Cevap yüzey yöntemi (CYY)’nin Box-Benkhen Tasarımı kullanılmıştır. CYY seçilen bir aralıktaki birkaç deney setine dayalı olarak işletim değişkenlerinden etkilenen yanıt yüzeyini en üst düzeye çıkaran değerli bir istatistiksel araçtır. Sonuç olarak bağımsız değişkenler için en iyi NP konsantrasyon değerleri SiO2 için 150 mg/l, Fe3O4 için 150 mg/l ve ZnO için 150 mg/l değerinde bulunmuştur. NP eklenmeden önceki biyogaz verimi 290 ml/g uçucu katı (UK) değerinde iken bağımsız değişkenlerin optimum koşullarında 320 ml/g UK değerinde tahmin edilmiştir. Varyans analizi ve yüksek regresyon katsayısı (%98), regresyon modeliyle deneysel değerlerin model tarafından iyi bir şekilde tahmin edildiğini doğrulamaktadır. Böylece gelecek çalışmalarda farklı NP’lerin AS’de etkilerinin birlikte incelenmesi önerilmektedir.
Destekleyen Kurum
Giresun Üniversitesi Bilimsel Araştırma Projeleri Birimi
Proje Numarası
FEN-BAP-A-270220-36
Teşekkür
Bu çalışma Giresun Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından FEN-BAP-A-270220-36 nolu proje ile desteklenmiştir. İlgili kuruma desteklerinden dolayı yazarlar olarak teşekkürlerimizi sunarız.
Kaynakça
- [1] S. V. Dhanalakshmi and R. A, Ramanujam. “Biogas generation in a vegetable waste anaerobic digester: An analytical approach,” Res. J. Recent Sci, 1 (3), 41-47, 2012.
- [2] M. Asif and T. Muneer, “Energy supply, its demand and security issues for developed and emerging economies," Renew. Sustain. Energy Rev., 11 (7), 1388-1413, 2007.
- [3] H. Şenol, M. A. Dereli̇, and F. Özbilgin, “Investigation of the distribution of bovine manure-based biomethane potential using an artificial neural network in Turkey to 2030,” Renew. Sustain. Energy Rev., 149, 111338, 2021.
- [4] G. A. Malomo, A.S. Madugu, and S. A. Bolu, “Sustainable animal manure management strategies and practices,” Agricultural Waste and Residues, 119, 2018.
- [5] M. E. López, E. R. Rene, M. C. Veiga, and C. Kennes, “Biogas technologies and cleaning techniques. In environmental chemistry for a sustainable world Springer,” Dordrecht., 347-377, 2012.
- [6] H. Şenol, “Anaerobic digestion of hazelnut (Corylus colurna) husks after alkaline pretreatment and determination of new important points in Logistic model curves,” Bioresour. Technol, 300, 122660, 2020.
- [7] Y.-J. Lee and D. J. Lee, “Impact of adding metal nanoparticles on anaerobic digestion performance–A review,” Bioresour. Technol, 292, 121926, 2019.
- [8] K., Hagos, J. Zong, D. Li, C. Liu, and X. Lu, “Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives,” Renew. Sustain. Energy Rev, 76, 1485-1496, 2017.
- [9] J. Zhang, Z. Wang, T. Lu, J. Liu, Y. Wang, P. Shen, et al., “Response and mechanisms of the performance and fate of antibiotic resistance genes to nano-magnetite during anaerobic digestion of swine manure,” J. Hazard. Mater, 366, 192-201, 2019.
- [10] J. J. Ambuchi, Z. Zhang, and Y. Feng, “Biogas enhancement using iron oxide nanoparticles and multi-wall carbon nanotubes,” Int J Chem Biomol Eng. 10, 1305-1311, 2016.
- [11] E. Abdelsalam, M. Samer, Y. A. Attia, M. A. Abdel-Hadi, H. E. Hassan, and Y. Badr, “Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure,” Energy, 120, 842-853, 2017.
- [12] H. Mu, Y. Chen, and N. Xiao, “Effects of metal oxide nanoparticles (TiO2, Al2O3, SiO2 and ZnO) on waste activated sludge anaerobic digestion,” Bioresour. Technol, 102 (22), 10305-10311, 2011.
- [13] Z. Z. Zhang, Y. F. Cheng, Y. H. Bai, J. J. Xu, Z. J. Shi, Y. Y. Shen, et al., “Evaluating the effects of metal oxide nanoparticles (TiO2, Al2O3, SiO2 and CeO2) on anammox process: Performance, microflora and sludge properties,” Bioresour. Technol, 266, 11-18, 2018.
- [14] O. Can and M. Ersan, “Response surface methodology for optimizing the marination conditions during the processing of rainbow trout fillets,” J. Anim. Plant Sci,. 23 (6), 1595-1602, 2013.
- [15] H. Şenol, “Methane yield prediction of ultrasonic pretreated sewage sludge by means of an artificial neural network,” Energy, 215, 119173, 2021.
- [16] A. Apha, “Standard methods for the examination of water and wastewater,” Apha Washington. 1985.
- [17] H. Şenol, “Effects of NaOH, thermal, and combined NaOH-thermal pretreatments on the biomethane yields from the anaerobic digestion of walnut shells,” Environ. Sci. Pollut. Res, 28 (17), 21661-21673, 2021.
- [18] Y. Chen, H. Yang, H. Zou, T. Sun, M. Li, and J. Zhai, “Effects of acid/alkali pretreatments on lignocellulosic biomass mono-digestion and its co-digestion with waste activated sludge,” J. Clean. Prod, 277, 123998, 2020.
- [19] H. Şenol, “Identification of new critical points for logistics model in cumulative methane yield curves after co-digestion of apple pulp and chicken manure with sulphuric acid pretreatment and a new modelling study,” Int. J. Energy Res, 44 (7), 6078-6087, 2020.
- [20] M. A. Tony, “Central composite design optimization of Bismarck Dye oxidation from textile effluent with Fenton’s reagent,” Appl. Water Sci, 10(5), 1, 2020.
- [21] J. J., Dongarra, J., Bunch, C., Moler, and G. Stewart, “LINPACK Users’ Guide 1979. LINPACK: http://www. netlib. org/lapack, 2010.
- [22] H. Şenol, “Enhancement in methane yield from anaerobic co-digestion of walnut shells and cattle manure,” Environ. Prog. Sustain. Energy, 39 (6), e13524, 2020.
- [23] H. Mu and Y. Chen, “Long-term effect of ZnO nanoparticles on waste activated sludge anaerobic digestion,” Water Res., 45 (17), 5612-5620, 2011.
- [24] S. Faisal, F. Yusuf Hafeez, Y. Zafar, S. Majeed, X. Leng, S. Zhao, et al., “A review on nanoparticles as boon for biogas producers—nano fuels and biosensing monitoring,” Appl. Sci, 9 (1), 59, 2018.
- [25] H. Şenol, M. Erşan, and E. Görgün, “Optimization of temperature and pretreatments for methane yield of hazelnut shells using the response surface methodology,” Fuel, 271, 117585, 2020.
- [26] D. C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons. 2017.
- [27] R. Sinha, R. Karan, A. Sinha, and S. K. Khare, “Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells,” Bioresour. Technol, 102 (2), 1516-1520, 2011.
- [28] Ö. Demir and A. Nurcan, “Manyetik nanopartiküllerin anaerobik çürütücüde biyogaz üretimi üzerine etkileri,” Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36 (2), 283-296, 2021.
- [29] A. E Sarrai, S. Hanini, N. K Merzouk, D. Tassalit, T. Szabó, K. Hernádi, and L. Nagy, “Using central composite experimental design to optimize the degradation of tylosin from aqueous solution by photo-fenton reaction,” Materials, 9 (6), 428, 2016.
Optimization of Nanoparticle Concentration in Anaerobic Digestion by Response Surface Method
Yıl 2022,
Cilt: 17 Sayı: 1, 209 - 219, 27.05.2022
Halil Şenol
,
Ayhan Kara
,
Selçuk Atasoy
,
Mehtap Erşan
Öz
Recently, it has been discovered that nanoparticles (NPs) have efficiency-enhancing effects on biogas production in anaerobic digestion (AS). In this study, the effects of Fe3O4, ZnO and SiO2 NPs on AS were investigated. High concentrations of some NPs are toxic. Therefore, the Box-Benkhen Design of the Response Surface Methodology (RSM) was used to find the best NP concentrations in AD of cattle manure used as a substrate. RSM is a valuable statistical tool that maximizes the response surface affected by operating variables based on several sets of experiments within a selected range. As a result, the best NP concentration values for the independent variables were found to be 150 mg/L for SiO2, 150 mg/L for Fe3O4 and 150 mg/L for ZnO. While the biogas yield before adding NP was 290 ml/g volatile solids (VS), it was estimated at 320 mL/g VS under the optimum conditions of the independent variables. The analysis of variance and the high regression coefficient (98%) confirm that the experimental values are well predicted by the polynomial regression model. Thus, it is recommended to examine the effects of different NPs together in AS in future studies.
Proje Numarası
FEN-BAP-A-270220-36
Kaynakça
- [1] S. V. Dhanalakshmi and R. A, Ramanujam. “Biogas generation in a vegetable waste anaerobic digester: An analytical approach,” Res. J. Recent Sci, 1 (3), 41-47, 2012.
- [2] M. Asif and T. Muneer, “Energy supply, its demand and security issues for developed and emerging economies," Renew. Sustain. Energy Rev., 11 (7), 1388-1413, 2007.
- [3] H. Şenol, M. A. Dereli̇, and F. Özbilgin, “Investigation of the distribution of bovine manure-based biomethane potential using an artificial neural network in Turkey to 2030,” Renew. Sustain. Energy Rev., 149, 111338, 2021.
- [4] G. A. Malomo, A.S. Madugu, and S. A. Bolu, “Sustainable animal manure management strategies and practices,” Agricultural Waste and Residues, 119, 2018.
- [5] M. E. López, E. R. Rene, M. C. Veiga, and C. Kennes, “Biogas technologies and cleaning techniques. In environmental chemistry for a sustainable world Springer,” Dordrecht., 347-377, 2012.
- [6] H. Şenol, “Anaerobic digestion of hazelnut (Corylus colurna) husks after alkaline pretreatment and determination of new important points in Logistic model curves,” Bioresour. Technol, 300, 122660, 2020.
- [7] Y.-J. Lee and D. J. Lee, “Impact of adding metal nanoparticles on anaerobic digestion performance–A review,” Bioresour. Technol, 292, 121926, 2019.
- [8] K., Hagos, J. Zong, D. Li, C. Liu, and X. Lu, “Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives,” Renew. Sustain. Energy Rev, 76, 1485-1496, 2017.
- [9] J. Zhang, Z. Wang, T. Lu, J. Liu, Y. Wang, P. Shen, et al., “Response and mechanisms of the performance and fate of antibiotic resistance genes to nano-magnetite during anaerobic digestion of swine manure,” J. Hazard. Mater, 366, 192-201, 2019.
- [10] J. J. Ambuchi, Z. Zhang, and Y. Feng, “Biogas enhancement using iron oxide nanoparticles and multi-wall carbon nanotubes,” Int J Chem Biomol Eng. 10, 1305-1311, 2016.
- [11] E. Abdelsalam, M. Samer, Y. A. Attia, M. A. Abdel-Hadi, H. E. Hassan, and Y. Badr, “Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure,” Energy, 120, 842-853, 2017.
- [12] H. Mu, Y. Chen, and N. Xiao, “Effects of metal oxide nanoparticles (TiO2, Al2O3, SiO2 and ZnO) on waste activated sludge anaerobic digestion,” Bioresour. Technol, 102 (22), 10305-10311, 2011.
- [13] Z. Z. Zhang, Y. F. Cheng, Y. H. Bai, J. J. Xu, Z. J. Shi, Y. Y. Shen, et al., “Evaluating the effects of metal oxide nanoparticles (TiO2, Al2O3, SiO2 and CeO2) on anammox process: Performance, microflora and sludge properties,” Bioresour. Technol, 266, 11-18, 2018.
- [14] O. Can and M. Ersan, “Response surface methodology for optimizing the marination conditions during the processing of rainbow trout fillets,” J. Anim. Plant Sci,. 23 (6), 1595-1602, 2013.
- [15] H. Şenol, “Methane yield prediction of ultrasonic pretreated sewage sludge by means of an artificial neural network,” Energy, 215, 119173, 2021.
- [16] A. Apha, “Standard methods for the examination of water and wastewater,” Apha Washington. 1985.
- [17] H. Şenol, “Effects of NaOH, thermal, and combined NaOH-thermal pretreatments on the biomethane yields from the anaerobic digestion of walnut shells,” Environ. Sci. Pollut. Res, 28 (17), 21661-21673, 2021.
- [18] Y. Chen, H. Yang, H. Zou, T. Sun, M. Li, and J. Zhai, “Effects of acid/alkali pretreatments on lignocellulosic biomass mono-digestion and its co-digestion with waste activated sludge,” J. Clean. Prod, 277, 123998, 2020.
- [19] H. Şenol, “Identification of new critical points for logistics model in cumulative methane yield curves after co-digestion of apple pulp and chicken manure with sulphuric acid pretreatment and a new modelling study,” Int. J. Energy Res, 44 (7), 6078-6087, 2020.
- [20] M. A. Tony, “Central composite design optimization of Bismarck Dye oxidation from textile effluent with Fenton’s reagent,” Appl. Water Sci, 10(5), 1, 2020.
- [21] J. J., Dongarra, J., Bunch, C., Moler, and G. Stewart, “LINPACK Users’ Guide 1979. LINPACK: http://www. netlib. org/lapack, 2010.
- [22] H. Şenol, “Enhancement in methane yield from anaerobic co-digestion of walnut shells and cattle manure,” Environ. Prog. Sustain. Energy, 39 (6), e13524, 2020.
- [23] H. Mu and Y. Chen, “Long-term effect of ZnO nanoparticles on waste activated sludge anaerobic digestion,” Water Res., 45 (17), 5612-5620, 2011.
- [24] S. Faisal, F. Yusuf Hafeez, Y. Zafar, S. Majeed, X. Leng, S. Zhao, et al., “A review on nanoparticles as boon for biogas producers—nano fuels and biosensing monitoring,” Appl. Sci, 9 (1), 59, 2018.
- [25] H. Şenol, M. Erşan, and E. Görgün, “Optimization of temperature and pretreatments for methane yield of hazelnut shells using the response surface methodology,” Fuel, 271, 117585, 2020.
- [26] D. C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons. 2017.
- [27] R. Sinha, R. Karan, A. Sinha, and S. K. Khare, “Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells,” Bioresour. Technol, 102 (2), 1516-1520, 2011.
- [28] Ö. Demir and A. Nurcan, “Manyetik nanopartiküllerin anaerobik çürütücüde biyogaz üretimi üzerine etkileri,” Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36 (2), 283-296, 2021.
- [29] A. E Sarrai, S. Hanini, N. K Merzouk, D. Tassalit, T. Szabó, K. Hernádi, and L. Nagy, “Using central composite experimental design to optimize the degradation of tylosin from aqueous solution by photo-fenton reaction,” Materials, 9 (6), 428, 2016.