Analysis of the Mosaic Defects in Graded and Non Graded In<sub>x</sub>Ga<sub>1-x</sub>N Solar Cell Structures
Yıl 2017,
Cilt: 21 Sayı: 1, 235 - 240, 03.02.2017
İlknur Kars Durukan
,
Mustafa Kemal Öztürk
,
Süleyman Özçelik
,
Ekmel Özbay
Öz
In this study, graded (A) InxGa1-xN (10.5 ≤ x ≤ 18.4) and non graded (B) InxGa1-xN (13.6 ≤ x ≤ 24.9) samples are grown on c-oriented sapphire substrate using the Metal Organic Chemical Vapour Deposition (MOCVD) technique. The structural, optical and electrical features of the grown InGaN/GaN solar cell structures are analyzed using High Resolution X-Ray Diffraction (HRXRD), Photoluminescense (PL), Ultraviolet (UV), current density and potential (JV) measurements. According to the HRXRD results; it is determined that the InGaN layer of the graded structure has a lower FWHM (Full width at half maximum) value. From the PL measurements, it is observed that the GaN half-width peak value of the graded sample is narrower and the InGaN peak width value of the graded sample is larger. From UV measurements, that the graded sample has a greater band range. JV measurements determine that the performance of the graded structure is higher.
Kaynakça
- [1] Nakamura, S., Pearton, S., Fasol, G. 2000.The Blue Laser Diode, Springer, Berlin,56s.
- [2] Arslan, E., Demirel, P., Cakmak, H., Ozturk, M.K., Ozbay, E. 2014. Mosaic Structure Characterization of the AlInN Layer Grown on Sapphire Substrate. Advances in Materials Science and Engineering, 2014, 1-11.
- [3] Davydov, V.Yu., Klochikhin, A.A., Seisyan, R.P., Emtsev, V.V., Ivanov, S.V., Bechstedt, F., Furthmuller, J., Harima, H., Mudryi, A.V., Aderhold, J. , Semchinova, O., Graul, J. 2002. Absorption and Emission of Hexagonal InN Evidence of Narrow Fundamental Band Gap. Phys. Status Solidi B, 229,R1-R3.
- [4] Wu., J., Walukiewicz., W., Yu., K. M., Ager III., J. W., Haller, E.E., Lu, Schaff, H. W. J.,Saito, Y. , Nanishi, Y. 2002. Unusual properties of the fundamental band gap of InN, Appl. Phys. Lett., 80, 3967-3969.
- [5] Matsuoka, T., Okamoto, H., Nakao, M., Harima, H., Kurimoto, E. 2002. Optical bandgap energy of wurtzite InN. Appl. Phys. Lett., 81,1246-1248.
- [6] Omkar, J., Ian, F. 2007. Design and characterization of GaN/InGaN solar cells. Appl.Phys.Lett., 91, 1-3.
- [7] Luque, A., Marti, A. 2001. A metallic intermediate band high efficiency solar cell. Prog. Photovoltaics, 9, 73-86.
- [8] Yamaguchi, M., Takamoto, T., Araki, K. 2006. Super high-efficiency multi-junction and concentrator solar cells. Solar Energy Mater Solar Cells, 90(18,19), 3068–3077.
- [9] King, R. R., Law, D. C., Edmondson, K. M., Fetzer, C. M., Kinsey, G. S., Yoon, H., Sherif, R. A., Karam, N. H. 2007. 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. App. Phys. Lett., 90, 1-3.
- [10] De Vos, A. 1992. Endoreversible Thermodynamics of Solar Energy Conversion, Oxford University Press, Oxford, 90s.
- [11] Nanishi, Y., Saito, Y., Yamaguchi, T. 2003. RF-Molecular Beam Epitaxy Growth and Properties of InN and Related Alloys. Jpn. J. Appl. Phys., 142, 2549-2559.
- [12] Ugo, L. et al. 2012. Increasing the reliability of solid state lighting system via self healing approaches. Microelectronic Reliability, 52(1),71-89.
- [13] Kendrick Chito, E. 2008. Revisiting Nitride Semiconductors, Epilayers, p-type Doping and Nanowires. University of Canterbury, Electrical and Electronic Engineering, NewZeland, 49s.
- [14] Brown, G.F., Ager III, J.W., Walukiewicz, W., Wu, J. 2010. Finite element simulations of compositionally graded InGaN solar cells. Solar Energy Materials and Solar Cells, 94, 478-483.
- [15] Yamaguchi, T., Morioka, C., Mizuo, K., Hori, M., Araki, T., Nanishi, Y., Suzuki, A. 2003. Growth of InN and InGaN on Si substrate for solar cell applications, Compound Semiconductors: Post-Conference Proceedings International Symposium, 25-27 August, USA, 214.
- [16] Hu, C., Lo, I, Hsu, Y.,Shih, C., Pang, W., Wang, Y., Lin, Y., Yang, C., Tsai, C., Hsu, G. Z. L. 2016. Growth of InGaN/GaN quantum wells with graded InGaN buffer for green to yellow light emitters Japanese Journal of Applied Physics, 55(8),1-6.
- [17] Sun, Y., Cho, Y., Suh, E.K., Lee, H. J., Choi, R.J., Hahn, Y.B. 2003. High brightness blue and green light emitting quantum wells with graded-In content profile grown by MOCVD,Phys. stat. sol. (c),7,2270-2273.
- [18] Schuster, M., Gervais, P. O., Jobst, B., Hosler, W., Averbeck, R., Riechert, H., Iberlkand, A., Stommer, R. 1999. Determination of the chemical composition of distorted InGaN GaN heterostructures from x-ray diffraction data. Journal of Physics D-Applied Physics, 32(10A), A56-A60.
- [19] Butcher, K.S.A., Tansley, T.L. 2005. InN latest development and a review of the band-gap controversy, Superlattices and Microstructures, 38(1), 1-37.
- [20] Zhu, X.L., Guo, L.W., Yu, N.S., Peng, M.Z., Yan, J.F., Ge, B.H., Jia, H.Q., Chen, H., Zhou, J.M. 2006. Characteristics of High In-content InGaN Alloys Grown by MOCVD, Chinese Physics Letters, 23(12), 3369-3371.
- [21] Fu, S.P. 2004. Effective mass of InN epilayers. Applied Physics Letters, 85(9), 1523-1525.
- [22] Wu, J., Walukiewicz, W., Li, S.X., Armitage, R., Ho, J. C., . Weber, E. R, Haller, E. E., Lu, H., Schaff, W. J., Barcz, A., Jakiela R. 2004. Effects of electron concentration on the optical absorption edge of InN. Applied Physics Letters, 84(15), 2805-2807.
- [23] Pankove, J. I., Miller, E. I., Berkeyheiser, J. E. 1971. GaN Electroluminescent Diodes. RCA Review, 32(3), 383-392.
- [24] Valdueza-Felip, S., Mukhtarova, A., Grenet, L., Bougerol, C., Durand, C., Eymery, J., Monroy, E. 2014. Improved conversion efficiency of as-grown InGaN/GaN quantum-well solar cells for hybrid integration. Appl. Phys.Exp., 7, 1-3.
- [25] Mahala, P., Behura, S. K., Ray, A., Dhanavantri, C., Jani, O. 2012. The Effect of Indium Composition on Open-Circuit Voltage of InGaN Thin-Film Solar Cell: An Analytical and Computer Simulation Study. AIP Conf. Proc., 1451, 85-87.
- [26] Cai, X. M., Zeng, S. W., Li, X., Zhang, J. Y., Lin, S., Lin, A. K, Chen, M., Liu, W. J., Wu, S. X., Zhang, B.P. 2011. Dependence of the Property of InGaN p-i-n Solar Cells on the Light Concentration and Temperature. IEEE Transactions on electron devices, 58,3905-3911.