Music Information Retrieval (MIR) has become a popular research area in recent years. In this context, researchers have developed music information systems to find solutions for such major problems as automatic playlist creation, hit song detection, and music genre or mood classification. Meta-data information, lyrics, or melodic content of music are used as feature resource in previous works. However, lyrics do not often used in MIR systems and the number of works in this field is not enough especially for Turkish. In this paper, firstly, we have extended our previously created Turkish MIR (TMIR) dataset, which comprises of Turkish lyrics, by including the audio file of each song. Secondly, we have investigated the effect of using audio and textual features together or separately on automatic Music Genre Classification (MGC). We have extracted textual features from lyrics using different feature extraction models such as word2vec and traditional Bag of Words. We have conducted our experiments on Support Vector Machine (SVM) algorithm and analysed the impact of feature selection and different feature groups on MGC. We have considered lyrics based MGC as a text classification task and also investigated the effect of term weighting method. Experimental results show that textual features can also be effective as well as audio features for Turkish MGC, especially when a supervised term weighting method is employed. We have achieved the highest success rate as 99,12\% by using both audio and textual features together.
Music genre classification Lyrics analysis; Word2vec; Audio classification; Machine learning
Bölüm | Makaleler |
---|---|
Yazarlar | |
Yayımlanma Tarihi | 6 Mayıs 2017 |
Yayımlandığı Sayı | Yıl 2017 Cilt: 21 Sayı: 2 |
e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688
Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.