In this study, a brief summary about quaternions and quaternionic curves are firstly presented. Also, the definition of focal curve is given. The focal curve of a smooth curve consists of the centers of its osculating hypersphere. By using this definition and the quaternionic osculating hyperspheres of these curves, the quaternionic focal curves in the spaces $\Q$ and $\Q_\nu$ with index $\nu=\{1,2\}$ are discussed. Some relations about spatial semi-real quaternionic curves and semi-real quaternionic curves are examined by using focal curvatures and "scalar Frenet equations" between the focal curvatures. Then, the notions: such as vertex, flattenings, a symmetry point are defined for these curves. Moreover, the relation between the Frenet apparatus of a quaternionic curve and the Frenet apparatus of its quaternionic focal curve are presented.
Quaternions Quaternionic curves; Osculating hypersphere; Focal curves; Semi-Euclidean space
Bölüm | Makaleler |
---|---|
Yazarlar | |
Yayımlanma Tarihi | 13 Haziran 2017 |
Yayımlandığı Sayı | Yıl 2017 Cilt: 21 Sayı: 2 |
e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688
Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.