Araştırma Makalesi
BibTex RIS Kaynak Göster

In vitro Investigation of Rutin-Loaded PLGA Nanoparticles on Leishmania infantum Promastigotes

Yıl 2022, Cilt: 26 Sayı: 3, 427 - 434, 20.12.2022
https://doi.org/10.19113/sdufenbed.1074029

Öz

Leishmaniasis is a group of illnesses occasioned Leishmania (L.) parasites transmitted by the bites of infected female Phlebotominae class flies and it is endemic in 102 countries. It is seen worldwide, particularly in developing countries. In the present study, the antileishmanial efficacy of free rutin and nanoparticles formed by encapsulating flavonoid rutin in a polymer nanoparticle system on Leishmania infantum promastigotes were contrasted. The efficacy of rutin-loaded PLGA nanoparticles (RT)NPs on the proliferation of promastigote form of L. infantum parasites was examined for the first time by counting the in vitro antileishmanial activities of (RT)NPs using the MTT assay and counting on the thoma slide. It has been observed that (RT)NPs significant affect the proliferation of parasites at concentrations of 1000, 750, and 500 μg/ml at 72nd and 96th hours. The viability% value decreased 10-fold at 1000 μg/ml concentration of (RT)NPs. While the IC50 value of promastigote form of L. infantum parasites was 29.2 ± 4.5 μg/ml in the specimens treated with RT at varied concentrations, the IC50 value of promastigote form of L. infantum parasites was found to be 23.0 ± 2.7 µg/ml in the specimens treated with (RT)NPs. It was observed that the absorbance measurements of (RT)NPs were lower compared to RT at concentrations of 1000, 750, and 500 μg/ml at 48th hour.

Kaynakça

  • [1] WHO, 2016. Weekly epidemiological record. 91(22), 285-296.
  • [2] Ghadimi, S. N., Sharifi, N., Osanloo, M. 2020. The leishmanicidal activity of essential oils: A systematic review. Journal of Herbmed Pharmacology, 9(4), 300-308.
  • [3] Chauhan, K., Kaur, G., Kaur, S. 2018. Activity of rutin, a potent flavonoid against SSG-sensitive and -resistant Leishmania donovani parasites in experimental leishmaniasis. International Immunopharmacology, 64, 372-385.
  • [4] Gutiérrez-Rebolledo, G. A., Drier-Jonas, S., Jiménez-Arellanes, M. A. 2017. Natural compounds and extracts from Mexican medicinal plants with anti-leishmaniasis activity: An update. Asian Pacific Journal of Tropical Medicine, 10(12), 1105-1110.
  • [5] Abamor, E. S., Allahverdiyev, A. M., Bagirova, M., Rafailovich, M. 2017. Meglumine antimoniate-TiO2@Ag nanoparticle combinations reduce toxicity of the drug while enhancing its antileishmanial effect. Acta Tropica, 169, 30-42.
  • [6] Hammi, K. M., Essid, R., Tabbene, O., Elkahoui, S., Majdoub, H., Ksouri, R. 2019. Antileishmanial activity of Moringa oleifera leaf extracts and potential synergy with amphotericin B. South African Journal of Botany, 129, 67-73.
  • [7] Singh, N., Mishra, B. B., Bajpai, S., Singh, R. K., Tiwari, V. K. 2014. Natural product based leads to fight against leishmaniasis. Bioorganic & Medicinal Chemistry, 22(1), 18-45.
  • [8] Sen, R., Chatterjee, M. 2011. Plant derived therapeutics for the treatment of leishmaniasis. Phytomedicine, 18(12), 1056-1069.
  • [9] Leonarduzzi, G., Testa, G., Sottero, B., Gamba, P., Poli, G. 2010. Design and development of nanovehicle-based delivery systems for preventive or therapeutic supplementation with flavonoids. Current medicinal chemistry, 17(1), 74-95.
  • [10] Frutos, M. J., Rincón-Frutos, L., Valero-Cases, E. 2019. Rutin, nonvitamin and nonmineral nutritional supplements, Academic Press, 111-117.
  • [11] Ganeshpurkar, A., Saluja, A. K. 2017. The pharmacological potential of rutin. Saudi Pharmaceutical Journal, 25(2), 149-164.
  • [12] de Medeiros, D. C., Mizokami, S. S., Sfeir, N., Georgetti, S. R., Urbano, A., Casagrande, R., Verri, W. A., Baracat, M. M. 2019. Preclinical evaluation of rutin-loaded microparticles with an enhanced analgesic effect. ACS Omega, 4(1), 1221-1227.
  • [13] Qu, S., Dai, C., Lang, F., Hu, L., Tang, Q., Wang, H., Zhang, Y., Hao, Z. 2018. Rutin attenuates vancomycin-induced nephrotoxicity by ameliorating oxidative stress, apoptosis, and inflammation in rats. Antimicrobial Agents and Chemotherapy, 63(1), e01545-18.
  • [14] Silva, M. C. P. D., Brito, J. M., Ferreira, A. D. S., Vale, A. A. M., Santos, A. P. A. D., Silva, L. A., Pereira, P. V. S., Nascimento, F. R. F., Nicolete, R., Guerra, R. N. M. 2018. Antileishmanial and immunomodulatory effect of babassu-loaded plga microparticles: a useful drug target to Leishmania amazonensis infection. Evidence-Based Complementary and Alternative Medicine, 2018, 1-14.
  • [15] Kemme, M., Heinzel-Wieland, R. 2018. Quantitative assessment of antimicrobial activity of PLGA films loaded with 4-Hexylresorcinol. Journal of Functional Biomaterials, 9(1), 4.
  • [16] Makadia, H. K., Siegel, S. J. 2011. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 3(3), 1377-1397.
  • [17] Derman, S., Mustafaeva, Z. A., Abamor, E. S., Bagirova, M., Allahverdiyev, A. 2015. Preparation, characterization and immunological evaluation: canine parvovirus synthetic peptide loaded PLGA nanoparticles. Journal of Biomedical Science, 22(1), 1-12.
  • [18] Arasoğlu, T., Derman, S., Mansuroğlu, B., Uzunoğlu, D., Koçyiğit, B. S., Gümüş, B., Acar, T., Tuncer, B. 2017. Preparation, characterization, and enhanced antimicrobial activity: quercetin-loaded PLGA nanoparticles against foodborne pathogens. Turkish Journal of Biology, 41, 127-140.
  • [19] Ahmad, A., Wei, Y., Syed, F., Khan, S., Khan, G. M., Tahir, K., Khan, A. U., Raza, M., Khan, F. U., Yuan, Q. 2016. Isatis tinctoria mediated synthesis of amphotericin B-bound silver nanoparticles with enhanced photoinduced antileishmanial activity: A novel green approach. Journal of Photochemistry and Photobiology B: Biology, 161, 17-24.
  • [20] Sousa-Batista, A. J., Escrivani-Oliveira, D., Falcão, C. A. B., Philipon, C. I. M. D. S., Rossi-Bergmann, B. 2018. Broad spectrum and safety of oral treatment with a promising nitrosylated chalcone in murine leishmaniasis. Antimicrobial agents and chemotherapy, 62(10), e00792-18.
  • [21] Kızılbey, K. 2019. Optimization of Rutin-Loaded PLGA Nanoparticles Synthesized by Single-Emulsion Solvent Evaporation Method. ACS Omega, 4(1), 555-562.
  • [22] Beyoğlu, G., Araç, Ö., Taşkın, D., Arayıcı, P. P., Kızılbey, K., Derman, S. 2020. Rutin Yüklü Kitosan Nanopartiküllerinin Sentezi, Karakterizasyonu ve Antioksidan Aktivitesinin Değerlendirilmesi. Eurasian Journal of Biological and Chemical Sciences, 3(2), 93-99.
  • [23] Durak, S., Arasoglu, T., Ates, S. C., Derman, S. 2020. Enhanced antibacterial and antiparasitic activity of multifunctional polymeric nanoparticles. Nanotechnology, 31(17), 175705.
  • [24] Grecco, S. D. S., Reimão, J. Q., Tempone, A. G., Sartorelli, P., Cunha, R. L., Romoff, P., Ferreira, M. J. P., Fávero, O. A., Lago, J. H. G.. 2012. In vitro antileishmanial and antitrypanosomal activities of flavanones from Baccharis retusa DC. (Asteraceae). Experimental Parasitology, 130(2), 141-145.
  • [25] Manjolin, L. C., dos Reis, M. B. G., do Carmo Maquiaveli, C., Santos-Filho, O. A., da Silva, E. R. 2013. Dietary flavonoids fisetin, luteolin and their derived compounds inhibit arginase, a central enzyme in Leishmania (Leishmania) amazonensis infection. Food Chemistry, 141(3), 2253-2262.
  • [26] Bhattacherjee, A., Dhara, K., Chakraborti, A. S. 2016. Argpyrimidine-tagged rutin-encapsulated biocompatible (ethylene glycol dimers) nanoparticles: Synthesis, characterization and evaluation for targeted drug delivery. International Journal of Pharmaceutics, 509(1-2), 507-517.
  • [27] Mauludin, R., Müller, R. H., Keck, C. M. 2009. Development of an oral rutin nanocrystal formulation. International Journal of Pharmaceutics, 370(1-2), 202-209.
  • [28] Mauludin, R., Müller, R. H., Keck, C. M. 2009. Kinetic solubility and dissolution velocity of rutin nanocrystals. European Journal of Pharmaceutical Sciences, 36(4-5), 502-510.
  • [29] Kumari, A., Yadav, S. K., Yadav, S. C. 2010. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces B: Biointerfaces, 75(1), 1-18.
  • [30] Muthu, M. S., Rawat, M. K., Mishra, A., Singh, S. 2009. PLGA nanoparticle formulations of risperidone: preparation and neuropharmacological evaluation. Nanomedicine: Nanotechnology, Biology and Medicine, 5(3), 323-333.
  • [31] Bala, I., Hariharan, S., Kumar, M. R. 2004. PLGA nanoparticles in drug delivery: the state of the art. Critical Reviews™ in Therapeutic Drug Carrier Systems, 21(5).
  • [32] Abamor, E. Ş. 2018. A New approach to the treatment of leıshmaniasis: quercetin-loaded polycaprolactone nanoparticles. Journal of the Turkish Chemical Society, Section A: Chemistry, 1071-1082.
  • [33] Abamor, E. S. 2017. Antileishmanial activities of caffeic acid phenethyl ester loaded PLGA nanoparticles against Leishmania infantum promastigotes and amastigotes in vitro. Asian Pacific Journal of Tropical Medicine, 10(1), 25-34.
  • [34] Pandey, P., et al. 2018. Implication of nano-antioxidant therapy for treatment of hepatocellular carcinoma using PLGA nanoparticles of rutin. Nanomedicine, 13(8), 849-870.
  • [35] Pandey, P., Rahman, M., Bhatt, P. C., Beg, S., Paul, B., Hafeez, A., Al-Abbasi, F. A., Nadeem, M. S., Baothman, O., Firoz Anwar, F., Kumar, V. 2018. Implication of nano-antioxidant therapy for treatment of hepatocellular carcinoma using PLGA nanoparticles of rutin. Nanomedicine, 13(8), 849-870.
  • [36] Abamor, E. S., Tosyali, O. A., Bagirova, M., Allahverdiyev, A. 2018. Nigella sativa oil entrapped polycaprolactone nanoparticles for leishmaniasis treatment. IET Nanobiotechnology, 12(8), 1018-1026.
  • [37] Allahverdiyev, A. M., Abamor, E. S., Bagirova, M., Baydar, S. Y., Ates, S. C., Kaya, F., Kaya, C., Rafailovich, M. 2013. Investigation of antileishmanial activities of Tio2@Ag nanoparticles on biological properties of L. tropica and L. infantum parasites, in vitro. Experimental Parasitology, 135(1), 55-63.

Rutin Yüklü PLGA Nanopartiküllerinin Leishmania infantum Promastigotları Üzerinde In vitro İncelenmesi

Yıl 2022, Cilt: 26 Sayı: 3, 427 - 434, 20.12.2022
https://doi.org/10.19113/sdufenbed.1074029

Öz

Leishmaniasis, enfekte dişi Phlebotominae sınıfı sineklerin ısırmasıyla bulaşan Leishmania (L.) parazitinin neden olduğu bir hastalık grubudur ve 102 ülkede endemiktir. Dünya genelinde bilhassa gelişmekte olan ülkelerde görülmektedir. Bu çalışmada serbest rutinin ve bir polimer nanopartikül sistemi içerisine bir flavonoid olan rutinin enkapsüle edilerek üretilen nanopartiküllerin Leishmania infantum promastigotları üzerindeki antileishmanial etkinliğini karşılaştırıldı. Rutin yüklü PLGA nanopartiküllerinin ((RT)NP) in vitro antileishmanial etkililiklerinin MTT analiziyle ve thoma lamında sayım yapılmasıyla, ilk sefer olarak (RT)NP’lerinin promastigot formdaki L. infantum parazitlerinin çoğalmasına etkisi incelenmiştir. (RT)NP’lerinin parazitlerin çoğalmasına, 72. ve 96. saatteki 1000, 750 ve 500 μg/ml’lik konsantrasyonlarında büyük oranda etki ettiği görülmüştür. %Canlılık değeri, (RT)NP’lerinin 1000 μg/ml’lik konsantrasyonunda 10 kat azalmıştır. Değişik konsantrasyonlarda RT uygulanan örneklerde, promastigot formdaki L. infantum parazitlerinin IC50 değeri 29,2 ± 4,5 μg/ml iken (RT)NP’leri uygulanan örneklerde promastigot formdaki L. infantum parazitlerinin IC50 ölçümünün 23,0 ± 2,7 μg/ml olduğu belirlenmiştir. 48. saatteki 1000, 750 ve 500 μg/ml’lik konsantrasyonlarda (RT)NP’lerinin, RT’e kıyasla absorbans ölçümlerinin daha alçak olduğu görülmüştür.

Kaynakça

  • [1] WHO, 2016. Weekly epidemiological record. 91(22), 285-296.
  • [2] Ghadimi, S. N., Sharifi, N., Osanloo, M. 2020. The leishmanicidal activity of essential oils: A systematic review. Journal of Herbmed Pharmacology, 9(4), 300-308.
  • [3] Chauhan, K., Kaur, G., Kaur, S. 2018. Activity of rutin, a potent flavonoid against SSG-sensitive and -resistant Leishmania donovani parasites in experimental leishmaniasis. International Immunopharmacology, 64, 372-385.
  • [4] Gutiérrez-Rebolledo, G. A., Drier-Jonas, S., Jiménez-Arellanes, M. A. 2017. Natural compounds and extracts from Mexican medicinal plants with anti-leishmaniasis activity: An update. Asian Pacific Journal of Tropical Medicine, 10(12), 1105-1110.
  • [5] Abamor, E. S., Allahverdiyev, A. M., Bagirova, M., Rafailovich, M. 2017. Meglumine antimoniate-TiO2@Ag nanoparticle combinations reduce toxicity of the drug while enhancing its antileishmanial effect. Acta Tropica, 169, 30-42.
  • [6] Hammi, K. M., Essid, R., Tabbene, O., Elkahoui, S., Majdoub, H., Ksouri, R. 2019. Antileishmanial activity of Moringa oleifera leaf extracts and potential synergy with amphotericin B. South African Journal of Botany, 129, 67-73.
  • [7] Singh, N., Mishra, B. B., Bajpai, S., Singh, R. K., Tiwari, V. K. 2014. Natural product based leads to fight against leishmaniasis. Bioorganic & Medicinal Chemistry, 22(1), 18-45.
  • [8] Sen, R., Chatterjee, M. 2011. Plant derived therapeutics for the treatment of leishmaniasis. Phytomedicine, 18(12), 1056-1069.
  • [9] Leonarduzzi, G., Testa, G., Sottero, B., Gamba, P., Poli, G. 2010. Design and development of nanovehicle-based delivery systems for preventive or therapeutic supplementation with flavonoids. Current medicinal chemistry, 17(1), 74-95.
  • [10] Frutos, M. J., Rincón-Frutos, L., Valero-Cases, E. 2019. Rutin, nonvitamin and nonmineral nutritional supplements, Academic Press, 111-117.
  • [11] Ganeshpurkar, A., Saluja, A. K. 2017. The pharmacological potential of rutin. Saudi Pharmaceutical Journal, 25(2), 149-164.
  • [12] de Medeiros, D. C., Mizokami, S. S., Sfeir, N., Georgetti, S. R., Urbano, A., Casagrande, R., Verri, W. A., Baracat, M. M. 2019. Preclinical evaluation of rutin-loaded microparticles with an enhanced analgesic effect. ACS Omega, 4(1), 1221-1227.
  • [13] Qu, S., Dai, C., Lang, F., Hu, L., Tang, Q., Wang, H., Zhang, Y., Hao, Z. 2018. Rutin attenuates vancomycin-induced nephrotoxicity by ameliorating oxidative stress, apoptosis, and inflammation in rats. Antimicrobial Agents and Chemotherapy, 63(1), e01545-18.
  • [14] Silva, M. C. P. D., Brito, J. M., Ferreira, A. D. S., Vale, A. A. M., Santos, A. P. A. D., Silva, L. A., Pereira, P. V. S., Nascimento, F. R. F., Nicolete, R., Guerra, R. N. M. 2018. Antileishmanial and immunomodulatory effect of babassu-loaded plga microparticles: a useful drug target to Leishmania amazonensis infection. Evidence-Based Complementary and Alternative Medicine, 2018, 1-14.
  • [15] Kemme, M., Heinzel-Wieland, R. 2018. Quantitative assessment of antimicrobial activity of PLGA films loaded with 4-Hexylresorcinol. Journal of Functional Biomaterials, 9(1), 4.
  • [16] Makadia, H. K., Siegel, S. J. 2011. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 3(3), 1377-1397.
  • [17] Derman, S., Mustafaeva, Z. A., Abamor, E. S., Bagirova, M., Allahverdiyev, A. 2015. Preparation, characterization and immunological evaluation: canine parvovirus synthetic peptide loaded PLGA nanoparticles. Journal of Biomedical Science, 22(1), 1-12.
  • [18] Arasoğlu, T., Derman, S., Mansuroğlu, B., Uzunoğlu, D., Koçyiğit, B. S., Gümüş, B., Acar, T., Tuncer, B. 2017. Preparation, characterization, and enhanced antimicrobial activity: quercetin-loaded PLGA nanoparticles against foodborne pathogens. Turkish Journal of Biology, 41, 127-140.
  • [19] Ahmad, A., Wei, Y., Syed, F., Khan, S., Khan, G. M., Tahir, K., Khan, A. U., Raza, M., Khan, F. U., Yuan, Q. 2016. Isatis tinctoria mediated synthesis of amphotericin B-bound silver nanoparticles with enhanced photoinduced antileishmanial activity: A novel green approach. Journal of Photochemistry and Photobiology B: Biology, 161, 17-24.
  • [20] Sousa-Batista, A. J., Escrivani-Oliveira, D., Falcão, C. A. B., Philipon, C. I. M. D. S., Rossi-Bergmann, B. 2018. Broad spectrum and safety of oral treatment with a promising nitrosylated chalcone in murine leishmaniasis. Antimicrobial agents and chemotherapy, 62(10), e00792-18.
  • [21] Kızılbey, K. 2019. Optimization of Rutin-Loaded PLGA Nanoparticles Synthesized by Single-Emulsion Solvent Evaporation Method. ACS Omega, 4(1), 555-562.
  • [22] Beyoğlu, G., Araç, Ö., Taşkın, D., Arayıcı, P. P., Kızılbey, K., Derman, S. 2020. Rutin Yüklü Kitosan Nanopartiküllerinin Sentezi, Karakterizasyonu ve Antioksidan Aktivitesinin Değerlendirilmesi. Eurasian Journal of Biological and Chemical Sciences, 3(2), 93-99.
  • [23] Durak, S., Arasoglu, T., Ates, S. C., Derman, S. 2020. Enhanced antibacterial and antiparasitic activity of multifunctional polymeric nanoparticles. Nanotechnology, 31(17), 175705.
  • [24] Grecco, S. D. S., Reimão, J. Q., Tempone, A. G., Sartorelli, P., Cunha, R. L., Romoff, P., Ferreira, M. J. P., Fávero, O. A., Lago, J. H. G.. 2012. In vitro antileishmanial and antitrypanosomal activities of flavanones from Baccharis retusa DC. (Asteraceae). Experimental Parasitology, 130(2), 141-145.
  • [25] Manjolin, L. C., dos Reis, M. B. G., do Carmo Maquiaveli, C., Santos-Filho, O. A., da Silva, E. R. 2013. Dietary flavonoids fisetin, luteolin and their derived compounds inhibit arginase, a central enzyme in Leishmania (Leishmania) amazonensis infection. Food Chemistry, 141(3), 2253-2262.
  • [26] Bhattacherjee, A., Dhara, K., Chakraborti, A. S. 2016. Argpyrimidine-tagged rutin-encapsulated biocompatible (ethylene glycol dimers) nanoparticles: Synthesis, characterization and evaluation for targeted drug delivery. International Journal of Pharmaceutics, 509(1-2), 507-517.
  • [27] Mauludin, R., Müller, R. H., Keck, C. M. 2009. Development of an oral rutin nanocrystal formulation. International Journal of Pharmaceutics, 370(1-2), 202-209.
  • [28] Mauludin, R., Müller, R. H., Keck, C. M. 2009. Kinetic solubility and dissolution velocity of rutin nanocrystals. European Journal of Pharmaceutical Sciences, 36(4-5), 502-510.
  • [29] Kumari, A., Yadav, S. K., Yadav, S. C. 2010. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces B: Biointerfaces, 75(1), 1-18.
  • [30] Muthu, M. S., Rawat, M. K., Mishra, A., Singh, S. 2009. PLGA nanoparticle formulations of risperidone: preparation and neuropharmacological evaluation. Nanomedicine: Nanotechnology, Biology and Medicine, 5(3), 323-333.
  • [31] Bala, I., Hariharan, S., Kumar, M. R. 2004. PLGA nanoparticles in drug delivery: the state of the art. Critical Reviews™ in Therapeutic Drug Carrier Systems, 21(5).
  • [32] Abamor, E. Ş. 2018. A New approach to the treatment of leıshmaniasis: quercetin-loaded polycaprolactone nanoparticles. Journal of the Turkish Chemical Society, Section A: Chemistry, 1071-1082.
  • [33] Abamor, E. S. 2017. Antileishmanial activities of caffeic acid phenethyl ester loaded PLGA nanoparticles against Leishmania infantum promastigotes and amastigotes in vitro. Asian Pacific Journal of Tropical Medicine, 10(1), 25-34.
  • [34] Pandey, P., et al. 2018. Implication of nano-antioxidant therapy for treatment of hepatocellular carcinoma using PLGA nanoparticles of rutin. Nanomedicine, 13(8), 849-870.
  • [35] Pandey, P., Rahman, M., Bhatt, P. C., Beg, S., Paul, B., Hafeez, A., Al-Abbasi, F. A., Nadeem, M. S., Baothman, O., Firoz Anwar, F., Kumar, V. 2018. Implication of nano-antioxidant therapy for treatment of hepatocellular carcinoma using PLGA nanoparticles of rutin. Nanomedicine, 13(8), 849-870.
  • [36] Abamor, E. S., Tosyali, O. A., Bagirova, M., Allahverdiyev, A. 2018. Nigella sativa oil entrapped polycaprolactone nanoparticles for leishmaniasis treatment. IET Nanobiotechnology, 12(8), 1018-1026.
  • [37] Allahverdiyev, A. M., Abamor, E. S., Bagirova, M., Baydar, S. Y., Ates, S. C., Kaya, F., Kaya, C., Rafailovich, M. 2013. Investigation of antileishmanial activities of Tio2@Ag nanoparticles on biological properties of L. tropica and L. infantum parasites, in vitro. Experimental Parasitology, 135(1), 55-63.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Fulya Kahvecioğlu Çetin 0000-0003-1489-5979

Sezen Canım Ateş 0000-0003-2196-7053

Yayımlanma Tarihi 20 Aralık 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 26 Sayı: 3

Kaynak Göster

APA Kahvecioğlu Çetin, F., & Canım Ateş, S. (2022). In vitro Investigation of Rutin-Loaded PLGA Nanoparticles on Leishmania infantum Promastigotes. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(3), 427-434. https://doi.org/10.19113/sdufenbed.1074029
AMA Kahvecioğlu Çetin F, Canım Ateş S. In vitro Investigation of Rutin-Loaded PLGA Nanoparticles on Leishmania infantum Promastigotes. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Aralık 2022;26(3):427-434. doi:10.19113/sdufenbed.1074029
Chicago Kahvecioğlu Çetin, Fulya, ve Sezen Canım Ateş. “In Vitro Investigation of Rutin-Loaded PLGA Nanoparticles on Leishmania Infantum Promastigotes”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26, sy. 3 (Aralık 2022): 427-34. https://doi.org/10.19113/sdufenbed.1074029.
EndNote Kahvecioğlu Çetin F, Canım Ateş S (01 Aralık 2022) In vitro Investigation of Rutin-Loaded PLGA Nanoparticles on Leishmania infantum Promastigotes. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26 3 427–434.
IEEE F. Kahvecioğlu Çetin ve S. Canım Ateş, “In vitro Investigation of Rutin-Loaded PLGA Nanoparticles on Leishmania infantum Promastigotes”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 26, sy. 3, ss. 427–434, 2022, doi: 10.19113/sdufenbed.1074029.
ISNAD Kahvecioğlu Çetin, Fulya - Canım Ateş, Sezen. “In Vitro Investigation of Rutin-Loaded PLGA Nanoparticles on Leishmania Infantum Promastigotes”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26/3 (Aralık 2022), 427-434. https://doi.org/10.19113/sdufenbed.1074029.
JAMA Kahvecioğlu Çetin F, Canım Ateş S. In vitro Investigation of Rutin-Loaded PLGA Nanoparticles on Leishmania infantum Promastigotes. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2022;26:427–434.
MLA Kahvecioğlu Çetin, Fulya ve Sezen Canım Ateş. “In Vitro Investigation of Rutin-Loaded PLGA Nanoparticles on Leishmania Infantum Promastigotes”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 26, sy. 3, 2022, ss. 427-34, doi:10.19113/sdufenbed.1074029.
Vancouver Kahvecioğlu Çetin F, Canım Ateş S. In vitro Investigation of Rutin-Loaded PLGA Nanoparticles on Leishmania infantum Promastigotes. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2022;26(3):427-34.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.