Ferri ve Ferro çekirdekli Yeni Destekler Üzerinde İmmobilize edilen Enzimin Biyokatalizör Özelliğinin Araştırılması
Yıl 2023,
Cilt: 27 Sayı: 2, 313 - 320, 25.08.2023
Elvan Hasanoğlu Özkan
,
Gamze Kaya Yılmaz
,
Nurdan Kurnaz Yetim
,
Nurşen Sarı
Öz
Küre yapısındaki ferri ve ferro koordinasyon polimerleri sentezlendi. Koordinasyon polimerlerinin kimyasal ve yapısal karakterizasyonunda Taramalı Elektron Mikroskopisi (SEM), Enerji Dağılımlı X-Işını Spektroskopisi (EDX), Jel Geçirgenlik Kromatografisi (GPC), elemental analiz ve Fourier Dönüşümlü Kızılötesi Spektroskopisi (FT-IR) kullanılmıştır. Glukano-1,5 lakton oluşumu ile ilgili kinetik parametrelerin karşılaştırılmak için glukoz oksidaz (GOD) enzimi koordinasyon polimerlerine immobilize edilmiştir. Analiz sonuçları, Fe2+ ve Fe3+ iyonlarının aynı desteğe farklı yapılarda koordinasyon gösterdiğini ortaya koymuştur. Birim yapı başına 2 mol Fe2+ iyonu ((PS-N-([Fe(CN)4L]K3)2) bağlanırken, 1 mol Fe3+ iyonunun (PS-N-([Fe(CN)2L]K)) bağlandığı görülmüştür. Km değerleri (PS-N-Fe2+)-GOD ve (PS-N-Fe3+)-GOD için sırasıyla 15,32 ve 10,93 olarak bulunmuştur. (PS-N-Fe3+)-GOD için Km değeri 0,5 kat daha yüksek bulunmuştur, böyle bir durumun olası nedeni Fe3+'ün daha büyük indirgenme potansiyelidir. Tekrarlanan 20 ölçümden sonra, (PS-N-Fe3+) polimeri üzerine immobilize edilen GOD'un %45,47 aktivitesi korunurken, (PS-N-Fe2+) polimeri üzerine immobilize edilen GOD'un %57,86 aktivitesi korunmuştur.
Destekleyen Kurum
Gazi Üniversitesi
Proje Numarası
05/2014-02
Teşekkür
Tüm yazarlar, Gazi Üniversitesi Proje Koordinasyon Birimine teşekkür eder.
Kaynakça
- [1] Bocian, A., Szymanska, M., Brykczynska, D.,
Kubicki, M., Wałesa-Chorab, M., Roviello, G. N.,
Fik-Jaskółka, M. A., Gorczynski, A., Patroniak, V.
2019. New artificial biomimetic enzyme
analogues based on iron(II/III) schiff base
complexes:an effect of (Benz)imidazole organic
moieties on phenoxazinone synthase and DNA
recognition. Molecules, 24, 3173-3180.
- [2] Rahman, L. H., El-Khatib, R. M., Nassr, L. A. E.,
Abu-Dief, A. M. 2017. DNAbinding ability mode,
spectroscopic studies, hydrophobicity, and in
vitro antibacterial evaluation of some new Fe(II)
complexes bearing ONO donors amino acid
schiff bases. Arab. J. Chem., 10, S1835-S1846.
- [3] Chen, H., Giri, N. C., Zhang, R., Yamane, K., Zhang,
Y., Maroney, M., Costa, M. 2010. Nickel ions
inhibit histone demethylase JMJD1A and DNA
repair enzyme ABH2 by replacing the ferrous
iron in the catalytic centers. J. Biol. Chem., 285,
7374-7383.
- [4] Abdel, L. H., Ismail, N. M., Ismael, M., Abu-Dief, A.
M., Ahmed, E. A. -H. 2017. Synthesis,
characterization, DFT calculations and
biological studies of Mn(II), Fe(II), Co(II) and
Cd(II) complexes based on a tetradentate ONNO
donor schiff base ligand. J. Mol. Struct., 1134,
851-862.
- [5] Gawali, S. L., Shelar, S. B., Gupta, J., Barick, K. C.,
Hassan, P. A. 2021. Immobilization of protein on
Fe3O4 nanoparticles for magnetic hyperthermia
application. Int. J. Biol. Macromol., 166, 851-860.
- [6] Pushkarev, A. S., Solovyev, M. A., Grigoriev, S. A.,
Pushkareva, I. V., Voloshin, Y. Z., Chornenka, N.
V., Belov, A. S., Millet, P., Kalinichenko, V. N.,
Dedov, A. G. 2020. Electrocatalytic hydrogen
production using the designed
hexaphenanthrene iron, cobalt and
ruthenium(II) cage complexes as cathode (pre)
catalysts immobilized on carbonaceous
substrates. Int. J. Hydrog. Energy. 45, 26206-
26216.
- [7] Hernández‑Hernández, A. A., Aguirre‑Álvarez,
G., Cariño‑Cortés, R., Mendoza‑Huizar, L.,
Jiménez‑Alvarado, R. 2020. Iron oxide
nanoparticles: synthesis, functionalization, and
applications in diagnosis and treatment of
cancer. Chem. Pap. 74, 3809-3824.
- [8] Britt, R. D., Rao, G., Tao, L. 2020. Bioassembly of
complex iron-sulfur enzymes: hydrogenases and
nitrogenases. Nat. Rev. Chem. 4, 542-549.
- [9] Lubitz, W., Ogata, H., Rüdiger, O., Reijerse, E.
2014. Hydrogenases. ACS Chem. Rev. 114, 4081-
4148.
- [10] Gail, E., Gos, S., Kulzer, R., Lorösch, J., Rubo, A.,
Sauer, M., Kellens, R., Reddy, J., Steier, N.,
Hasenpusch, W. 2011. Cyano compounds,
inorganic. Ullmann's Encyclopedia of Industrial
Chemistry. Weinheim: Wiley-VCH.
- [11] DiCosimo, R., McAuliffe, J., Poulose, A. J.,
Bohlmann, G. 2013. Industrial use of
immobilized enzymes. Chem. Soc Rev. 42, 6437-
6474.
- [12] Van Staveren, D. R., Metzler-Nolte, N. 2004.
Bioorganometallic chemistry of ferrocene.
Chem. Rev. 104, 5931-5985.
- [13] Saravanakumar, D., Sengottuvelan, N.,
Narayanan, V., Kandaswamy, M., Varghese, T. L.
2013. Burning-rate enhancement of a highenergy rocket composite solid propellant based
on ferrocene-grafted hydroxyl-terminated
polybutadiene binder. J. Appl. Polym. Sci., 119,
2517-2524.
- [14] Cheng, Z., Zhang, G., Fan, X., Bi, F., Zhao, F., Zhang,
W. 2014. Synthesis, characterization, migration
and catalytic effects of energetic ionic ferrocene
compounds on thermal decomposition of main
components of solid propellants. Inorg. Chim.
Acta., 421, 191-199.
- [15] Garrett, R. H., Grisham, C. M. 1999. Biochemistry.
2nd ed. Saunders College Publishing, pp 426-
427.
- [16] Kayhan, S. 2013. Nanoplatforms attached schiff
bases by condensation method; investigation of
Glucose oxidase enzyme as biocatalysts. M.S.
thesis, Department of Chemistry, Gazi University
Institute of Science, Ankara, Turkey.
- [17] Hasanoğlu Özkan, E., Sarı, N. 2020. Use of
immobilized novel dendritic molecules as a
marker for the detection of glucose in artificial
urine. J. Mol. Struct., 1201, 127134.
- [18] Kurnaz Yetim, N., Hasanoğlu Özkan, E., Sarı, N.
2017. Immobilization of GOx on Trp/Trp-Fc
functionalized nanospheres: improved of
reusability and stability. GU J Sci, 30, 114-122.
- [19] Gubitz, G., Kunssberg, E., Van Zoonen, P., Jansen,
H., Gooijer, C., Velthorst, N. H., Fei, R. W. 1988.
Chemically Modified Surfaces (Edt. Leyden, D. E.,
Collins, W. T.), London, Gordon and Breach, pp.
110-119.
- [20] Kurnaz Yetim, N., Hasanoğlu Özkan, E., Daniş, B.,
Tümtürk, H., Sarı, N. 2015. Research on the
repeated use of novel ferrocene-tagged
nanomaterial for determination of glucose. Int. J.
Polym. Mater. 64, 888-893.
- [21] Bankar, S. B., Bule, M. V., Singhal, R. S.,
Ananthanarayan, L. 2009. Glucose oxidase-An
overview. Biotechnol. Ad. 27, 489-501.
- [22] Ozdem, N., Hasanoğlu Ozkan, E., Sarı, N., Arslan,
F., Tümtürk, H. 2014. Immobilization of glucose
oxidase attached to new nanospheres including
azomethine. Macromol. Res. 22, 1282-1287.
- [23] Kurnaz Yetim, N., Sarı, N. 2019. Novel
dendrimers containing redox mediator: enzyme
immobilization and applications. J. Mol. Struc.
1191, 158-164.
- [24] Rauf, A., İhsan, A., Akhtar, K., Ghauri, M. A.,
Rahman, M., Anvar, M. A., Khalid, A. M. 2006.
Glucose oxidase immobilization on a novel
cellulose acetate-polymethylmetacrylate. J.
Biotechnol. 121, 351-360.
Investigation Biocatalysts of Immobilized Enzyme on New Supports with Ferri and Ferro Nuclei
Yıl 2023,
Cilt: 27 Sayı: 2, 313 - 320, 25.08.2023
Elvan Hasanoğlu Özkan
,
Gamze Kaya Yılmaz
,
Nurdan Kurnaz Yetim
,
Nurşen Sarı
Öz
Ferri and ferro coordination polymers in sphere structure were synthesized. Scanning Electron Microscopy (SEM) Energy Dispersive X-Ray Spectroscopy (EDX), Gel Permeation Chromatography (GPC), elemental analysis, and Fourier Transform Infrared Spectroscopy (FT-IR) were performed for chemical and structural characterization of the coordination polymers. Glucose oxidase (GOD) enzyme immobilized to compare of kinetic parameters deal with glucano-1,5 lacton formation. Analyses results illustrate that structures coordination of ions Fe2+ and Fe3+ are different to the same support. It was seen that 2 mol of Fe2+ ion ((PS-N-([Fe(CN)4L]K3)2) was bound per unit structure while 1 mol of Fe3+ ion (PS-N-([Fe(CN)2L]K)) is attaching. Km values of were found as 15.32 and 10.93 for (PS-N-Fe2+)-GOD and (PS-N-Fe3+)-GOD, respectively. Km value for (PS-N-Fe3+)-GOD was found to be 0.5 times higher, possible reason of such a case is the larger reduction potential of Fe3+. As the charge on the coordination structure increased, the enzyme's affinity for the substrate increased. After 20 repeated measurements, GOD immobilized on (PS-N-Fe3+) polymer retained 45.47% activity, while GOD immobilized on (PS-N-Fe2+) polymer retained 57.86% activity.
Proje Numarası
05/2014-02
Kaynakça
- [1] Bocian, A., Szymanska, M., Brykczynska, D.,
Kubicki, M., Wałesa-Chorab, M., Roviello, G. N.,
Fik-Jaskółka, M. A., Gorczynski, A., Patroniak, V.
2019. New artificial biomimetic enzyme
analogues based on iron(II/III) schiff base
complexes:an effect of (Benz)imidazole organic
moieties on phenoxazinone synthase and DNA
recognition. Molecules, 24, 3173-3180.
- [2] Rahman, L. H., El-Khatib, R. M., Nassr, L. A. E.,
Abu-Dief, A. M. 2017. DNAbinding ability mode,
spectroscopic studies, hydrophobicity, and in
vitro antibacterial evaluation of some new Fe(II)
complexes bearing ONO donors amino acid
schiff bases. Arab. J. Chem., 10, S1835-S1846.
- [3] Chen, H., Giri, N. C., Zhang, R., Yamane, K., Zhang,
Y., Maroney, M., Costa, M. 2010. Nickel ions
inhibit histone demethylase JMJD1A and DNA
repair enzyme ABH2 by replacing the ferrous
iron in the catalytic centers. J. Biol. Chem., 285,
7374-7383.
- [4] Abdel, L. H., Ismail, N. M., Ismael, M., Abu-Dief, A.
M., Ahmed, E. A. -H. 2017. Synthesis,
characterization, DFT calculations and
biological studies of Mn(II), Fe(II), Co(II) and
Cd(II) complexes based on a tetradentate ONNO
donor schiff base ligand. J. Mol. Struct., 1134,
851-862.
- [5] Gawali, S. L., Shelar, S. B., Gupta, J., Barick, K. C.,
Hassan, P. A. 2021. Immobilization of protein on
Fe3O4 nanoparticles for magnetic hyperthermia
application. Int. J. Biol. Macromol., 166, 851-860.
- [6] Pushkarev, A. S., Solovyev, M. A., Grigoriev, S. A.,
Pushkareva, I. V., Voloshin, Y. Z., Chornenka, N.
V., Belov, A. S., Millet, P., Kalinichenko, V. N.,
Dedov, A. G. 2020. Electrocatalytic hydrogen
production using the designed
hexaphenanthrene iron, cobalt and
ruthenium(II) cage complexes as cathode (pre)
catalysts immobilized on carbonaceous
substrates. Int. J. Hydrog. Energy. 45, 26206-
26216.
- [7] Hernández‑Hernández, A. A., Aguirre‑Álvarez,
G., Cariño‑Cortés, R., Mendoza‑Huizar, L.,
Jiménez‑Alvarado, R. 2020. Iron oxide
nanoparticles: synthesis, functionalization, and
applications in diagnosis and treatment of
cancer. Chem. Pap. 74, 3809-3824.
- [8] Britt, R. D., Rao, G., Tao, L. 2020. Bioassembly of
complex iron-sulfur enzymes: hydrogenases and
nitrogenases. Nat. Rev. Chem. 4, 542-549.
- [9] Lubitz, W., Ogata, H., Rüdiger, O., Reijerse, E.
2014. Hydrogenases. ACS Chem. Rev. 114, 4081-
4148.
- [10] Gail, E., Gos, S., Kulzer, R., Lorösch, J., Rubo, A.,
Sauer, M., Kellens, R., Reddy, J., Steier, N.,
Hasenpusch, W. 2011. Cyano compounds,
inorganic. Ullmann's Encyclopedia of Industrial
Chemistry. Weinheim: Wiley-VCH.
- [11] DiCosimo, R., McAuliffe, J., Poulose, A. J.,
Bohlmann, G. 2013. Industrial use of
immobilized enzymes. Chem. Soc Rev. 42, 6437-
6474.
- [12] Van Staveren, D. R., Metzler-Nolte, N. 2004.
Bioorganometallic chemistry of ferrocene.
Chem. Rev. 104, 5931-5985.
- [13] Saravanakumar, D., Sengottuvelan, N.,
Narayanan, V., Kandaswamy, M., Varghese, T. L.
2013. Burning-rate enhancement of a highenergy rocket composite solid propellant based
on ferrocene-grafted hydroxyl-terminated
polybutadiene binder. J. Appl. Polym. Sci., 119,
2517-2524.
- [14] Cheng, Z., Zhang, G., Fan, X., Bi, F., Zhao, F., Zhang,
W. 2014. Synthesis, characterization, migration
and catalytic effects of energetic ionic ferrocene
compounds on thermal decomposition of main
components of solid propellants. Inorg. Chim.
Acta., 421, 191-199.
- [15] Garrett, R. H., Grisham, C. M. 1999. Biochemistry.
2nd ed. Saunders College Publishing, pp 426-
427.
- [16] Kayhan, S. 2013. Nanoplatforms attached schiff
bases by condensation method; investigation of
Glucose oxidase enzyme as biocatalysts. M.S.
thesis, Department of Chemistry, Gazi University
Institute of Science, Ankara, Turkey.
- [17] Hasanoğlu Özkan, E., Sarı, N. 2020. Use of
immobilized novel dendritic molecules as a
marker for the detection of glucose in artificial
urine. J. Mol. Struct., 1201, 127134.
- [18] Kurnaz Yetim, N., Hasanoğlu Özkan, E., Sarı, N.
2017. Immobilization of GOx on Trp/Trp-Fc
functionalized nanospheres: improved of
reusability and stability. GU J Sci, 30, 114-122.
- [19] Gubitz, G., Kunssberg, E., Van Zoonen, P., Jansen,
H., Gooijer, C., Velthorst, N. H., Fei, R. W. 1988.
Chemically Modified Surfaces (Edt. Leyden, D. E.,
Collins, W. T.), London, Gordon and Breach, pp.
110-119.
- [20] Kurnaz Yetim, N., Hasanoğlu Özkan, E., Daniş, B.,
Tümtürk, H., Sarı, N. 2015. Research on the
repeated use of novel ferrocene-tagged
nanomaterial for determination of glucose. Int. J.
Polym. Mater. 64, 888-893.
- [21] Bankar, S. B., Bule, M. V., Singhal, R. S.,
Ananthanarayan, L. 2009. Glucose oxidase-An
overview. Biotechnol. Ad. 27, 489-501.
- [22] Ozdem, N., Hasanoğlu Ozkan, E., Sarı, N., Arslan,
F., Tümtürk, H. 2014. Immobilization of glucose
oxidase attached to new nanospheres including
azomethine. Macromol. Res. 22, 1282-1287.
- [23] Kurnaz Yetim, N., Sarı, N. 2019. Novel
dendrimers containing redox mediator: enzyme
immobilization and applications. J. Mol. Struc.
1191, 158-164.
- [24] Rauf, A., İhsan, A., Akhtar, K., Ghauri, M. A.,
Rahman, M., Anvar, M. A., Khalid, A. M. 2006.
Glucose oxidase immobilization on a novel
cellulose acetate-polymethylmetacrylate. J.
Biotechnol. 121, 351-360.