Apoptotik Yolaklar ve Hedefe Yönelik Tedaviler
Yıl 2020,
Cilt: 27 Sayı: 4, 565 - 573, 25.12.2020
Aylin Gökhan
,
Kubilay Doğan Kılıç
,
Kanat Gülle
Yiğit Uyanıkgil
,
Türker Çavuşoğlu
Öz
Fizyolojik ve patolojik durumlarda, işleyişleri farklı, nekroz ve apoptoz olarak adlandırılan iki ana hücre ölümü meydana gelir. Apoptoz basamaklarındaki disregülasyonun kanser veya otoimmüniteyi tetiklediği bildirilmiş olup, aşırı apoptoz ise dejeneratif hastalıklarla ilişkilendirilmektedir. Proliferasyon artışıyla karakterize edilen kanserin tedavisi için hücrelerin apoptozdan kurtulma yolları araştırılmaktadır. Bununla ilişkili olarak kanser hücrelerinde Bcl-2, Bcl-xL ve Mcl-1 gibi antiapoptotik proteinlerin arttığı, proapoptotik proteinlerin ise azaldığı belirlenmiştir. Hücre ölümünde görev alan birçok protein ve protein kompleksleri arasında bir diğer önemli grubu apoptoz inhibitörü (IAP) protein ailesi oluşturmaktadır. IAP’lar apoptozda hem intrinsik hem de ekstrinsik yolağı baskılayabilen endojen kaspaz inhibitörleri olarak fonksiyon görmekte olup, apoptoz dışında hücre bölünmesi ve immün regülasyonda da rol almaktadırlar. Bcl-2 ve IAP ailesi üyeleri gibi aşırı ekspresyonu tespit edilen proteinler, hem tanı koyma hem de tedavi aşamasında yarar sağlamaktadır. Günümüzde sadece kanser hücresini hedefleyen ilaçlar tedavi protokolleri arasına girmiş bulunmaktadır. Bu derlemede apoptotik yolaklara ait moleküler mekanizmalar ve onlarla ilişkili hedefe yönelik yeni tedavi yaklaşımları genel hatlarıyla irdelenmektedir.
Kaynakça
- Pfeffer CM, Singh ATK. Apoptosis: a target for anticancer therapy. Int J Mol Sci. 2018;19(2):448.
- Müller GJ, Stadelmann C, Bastholm L, Elling F, Lassmann H, Johansen FF. Ischemia Leads to Apoptosis-and Necrosis-like Neuron Death in the Ischemic Rat Hippocampus. Brain Pathol. 2006;14(4):415–24.
- Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–57.
- Hassan M, Watari H, AbuAlmaaty A, Ohba Y, Sakuragi N. Apoptosis and molecular targeting therapy in cancer. Biomed Res Int. 2014;2014:150845.
- Chowdhury I, Tharakan B, Bhat GK. Caspases — An update. Comp Biochem Physiol Part B Biochem Mol Biol. 2008;151(1):10–27.
- Bose K. Proteases in apoptosis: Pathways, protocols and translational advances. Proteases in Apoptosis: Pathways, Protocols and Translational Advances. 2015. 1–237 p.
- Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer. 2002;2(4):277–88.
- Gurzov EN, Eizirik DL. Bcl-2 proteins in diabetes: mitochondrial pathways of β-cell death and dysfunction. Trends Cell Biol. 2011;21(7):424–31. 9. Oltval ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death. Cell. 1993;74(4):609–19.
- Xu YZ, Kanagaratham C, Youssef M, Radzioch D. New Frontiers in Cancer Chemotherapy — Targeting Cell Death Pathways. In: Kanagaratham C, editor. Cell Biology - New Insights. Rijeka: InTech; 2016. p. Ch. 4.
- Peter ME, Krammer PH. The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ. 2003;10(1):26–35.
- Yang JK. Death effecter domain for the assembly of death-inducing signaling complex. Apoptosis. 2015;20(2):235–9.
- Horn S, Hughes MA, Schilling R, Sticht C, Tenev T, Ploesser M, Meier P, et al. Caspase-10 Negatively Regulates Caspase-8-Mediated Cell Death, Switching the Response to CD95L in Favor of NF-κB Activation and Cell Survival. Cell Rep. 2017;19(4):785–97.
- Jost PJ, Grabow S, Gray D, Mckenzie MD, Nachbur U, Huang DCS, Bouillet P, et al. XIAP acts as a switch between type I and type II FAS-induced apoptosis signalling. Nature. 2010;
- Shamas-Din A, Bindner S, Zhu W, Zaltsman Y, Campbell C, Gross A, Leber B, et al. tBid undergoes multiple conformational changes at the membrane required for Bax activation. J Biol Chem. 2013;288(30):22111–27.
- Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 2003;114(2):181–90.
- Varfolomeev E, Vucic D. Intracellular regulation of TNF activity in health and disease. Cytokine. 2018;101:26–32.
- Safa AR. c-FLIP, a master anti-apoptotic regulator. Exp Oncol. 2012;34(3):176–84.
- Micheau O, Thome M, Schneider P, Holler N, Tschopp J, Nicholson DW, Briand C, et al. The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J Biol Chem. 2002;277(47):45162–71.
- Murphy JM, Silke J. Ars Moriendi; the art of dying well - new insights into the molecular pathways of necroptotic cell death. EMBO Rep. 2014;15(2):155–64.
- Mahoney DJ, Cheung HH, Mrad RL, Plenchette S, Simard C, Enwere E, Arora V, et al. Both cIAP1 and cIAP2 regulate TNFalpha-mediated NF-kappaB activation. Proc Natl Acad Sci U S A. 2008;105(33):11778–83.
- Amin P, Florez M, Najafov A, Pan H, Geng J, Ofengeim D, Dziedzic SA, et al. Regulation of a distinct activated RIPK1 intermediate bridging complex I and complex II in TNFα-mediated apoptosis. Proc Natl Acad Sci U S A. 2018;115(26):E5944–53.
- He S, Wang L, Miao L, Wang T, Du F, Zhao L, Wang X. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell. 2009;137(6):1100–11.
- Tenev T, Bianchi K, Darding M, Broemer M, Langlais C, Wallberg F, Zachariou A, et al. The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell. 2011;43(3):432–48.
- Nakano H, Piao X, Shindo R, Komazawa-Sakon S. Cellular FLICE-Inhibitory Protein Regulates Tissue Homeostasis. Curr Top Microbiol Immunol. 2015;403:119–41.
- Besbes S, Billard C. First MCL-1-selective BH3 mimetics as potential therapeutics for targeted treatment of cancer. Cell Death Dis. 2015;6(7):e1810.
- Elkholi R, Floros K V., Chipuk JE. The Role of BH3-Only Proteins in Tumor Cell Development, Signaling, and Treatment. Genes Cancer. 2011;2(5):523–37.
- Robak T. BCL-2 inhibitors for Chronic Lymphocytic Leukemia. J Leuk. 2015;03(03).
- Bhola PD, Letai A. Mitochondria-Judges and Executioners of Cell Death Sentences. Mol Cell. 2016;61(5):695–704.
- Delbridge ARD, Strasser A. The BCL-2 protein family, BH3-mimetics and cancer therapy. Cell Death Differ. 2015;22(7):1071–80.
- Chen J, Freeman A, Liu J, Dai Q, Lee R. The Apoptotic Effect of HA14-1, a Bcl-2-interacting Small Molecular Compound, Requires Bax Translocation and Is Enhanced by PK111951Supported by the Huntsman Cancer Foundation, Howard Hughes Medical Institute Fellow to Faculty Transition Program at the. Mol Cancer Ther. 2002;1(12):981–7.
- Baggstrom MQ, Qi Y, Koczywas M, Argiris A, Johnson EA, Millward MJ, Murphy SC, et al. A Phase II Study of AT-101 (Gossypol) in Chemotherapy-Sensitive Recurrent Extensive-Stage Small Cell Lung Cancer. J Thorac Oncol. 2011;6(10):1757–60.
- Jeong H-J, Ryu K-J, Kim H-M. Anticancer agent ABT-737 possesses anti-atopic dermatitis activity via blockade of caspase-1 in atopic dermatitis in vitro and in vivo models. Immunopharmacol Immunotoxicol. 2018;40(4):319–26.
- Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, Dayton BD, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;
- Montero J, Letai A. Why do BCL-2 inhibitors work and where should we use them in the clinic? Cell Death Differ. 2018;25(1):56–64. 36. Campbell KJ, Tait SWG. Targeting BCL-2 regulated apoptosis in cancer. Open Biol. 2018;8(5):180002.
- Knight T, Edwards H, Taub JW, Ge Y. Evaluating venetoclax and its potential in treatment-naïve acute myeloid leukemia. Cancer Manag Res. 2019;11:3197–213.
- Kim Y, Anderson JL, Lewin SR. Getting the “Kill” into “Shock and Kill”: Strategies to Eliminate Latent HIV. Cell Host Microbe. 2018;23(1):14–26.
- Kudelova J, Fleischmannova J, Adamova E, Matalova E. Pharmacological caspase inhibitors: research towards therapeutic perspectives. J Physiol Pharmacol. 2015;66(4):473–82. 40. Moretti L, Kim KW, Jung DK, Willey CD, Lu B. Radiosensitization of solid tumors by Z-VAD, a pan-caspase inhibitor. Mol Cancer Ther. 2009;8(5):1270–9.
- Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, Abbott D, et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol. 2008;4(5):313–21.
- Linkermann A, Bräsen JH, Himmerkus N, Liu S, Huber TB, Kunzendorf U, Krautwald S. Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury. Kidney Int. 2012;81(8):751–61.
- Trichonas G, Murakami Y, Thanos A, Morizane Y, Kayama M, Debouck CM, Hisatomi T, et al. Receptor interacting protein kinases mediate retinal detachment-induced photoreceptor necrosis and compensate for inhibition of apoptosis. Proc Natl Acad Sci U S A. 2010;107(50):21695–700.
- Duprez L, Takahashi N, Van Hauwermeiren F, Vandendriessche B, Goossens V, Vanden Berghe T, Declercq W, et al. RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity. 2011;35(6):908–18.
- Clem RJ, Miller LK. Control of programmed cell death by the baculovirus genes p35 and iap. Mol Cell Biol. 1994;14(8):5212–22.
- HUGO Gene Nomenclature Committee at the European Bioinformatics Institute. Baculoviral IAP repeat containing (BIRC) [Internet]. 2019 [cited 2019 Aug 29]. Available from: https://www.genenames.org/data/genegroup/#!/group/419
- Rathore R, McCallum JE, Varghese E, Florea A-M, Büsselberg D. Overcoming chemotherapy drug resistance by targeting inhibitors of apoptosis proteins (IAPs). Apoptosis. 2017;22(7):898–919. 48. Sharma S, Kaufmann T, Biswas S. Impact of inhibitor of apoptosis proteins on immune modulation and inflammation. Immunol Cell Biol. 2017;95(3):236–43.
- Belkacemi L. Exploiting the Extrinsic and the Intrinsic Apoptotic Pathways for Cancer Therapeutics. 2018;(August).
- Ayachi O, Barlin M, Broxtermann PN, Kashkar H, Mauch C, Zigrino P. The X-linked inhibitor of apoptosis protein (XIAP) is involved in melanoma invasion by regulating cell migration and survival. Cell Oncol. 2019;42(3):319–29.
- Yang WZ, Zhou H, Yan Y. XIAP underlies apoptosis resistance of renal cell carcinoma cells. Mol Med Rep. 2017;
- Dizdar L, Jünemann LM, Werner TA, Verde PE, Baldus SE, Stoecklein NH, Knoefel WT, et al. Clinicopathological and functional implications of the inhibitor of apoptosis proteins survivin and XIAP in esophageal cancer. Oncol Lett. 2018;15(3):3779–89.
- Johnson ME, Howerth EW. Survivin: a bifunctional inhibitor of apoptosis protein. Vet Pathol. 2004;41(6):599–607. 54. Mahotka C, Liebmann J, Wenzel M, Suschek C V., Schmitt M, Gabbert HE, Gerharz CD. Differential subcellular localization of functionally divergent survivin splice variants. Cell Death Differ. 2002;9(12):1334–42.
- Chen X, Duan N, Zhang C, Zhang W. Survivin and Tumorigenesis: Molecular Mechanisms and Therapeutic Strategies. J Cancer. 2016;7(3):314–23.
- Gonda A, Kabagwira J, Senthil GN, Ferguson Bennit HR, Neidigh JW, Khan S, Wall NR. Exosomal survivin facilitates vesicle internalization. Oncotarget. 2018;9(79):34919–34.
- Khan S, S Jutzy JM, May Valenzuela MA, Turay D, Aspe JR, Ashok A, Mirshahidi S, et al. Plasma-Derived Exosomal Survivin, a Plausible Biomarker for Early Detection of Prostate Cancer. Li J, editor. PLoS One. 2012;7(10):e46737.
- Achard C, Surendran A, Wedge M-E, Ungerechts G, Bell J, Ilkow CS. Lighting a Fire in the Tumor Microenvironment Using Oncolytic Immunotherapy. 2018;