Araştırma Makalesi
BibTex RIS Kaynak Göster

Yield Stability and Agronomic Performance of Late-Maturing Pro-Vitamin A Maize in Southwest Nigeria Using GGE Biplot Analysis

Yıl 2025, Cilt: 39 Sayı: 1, 208 - 228, 31.03.2025

Öz

Maize is one of the most essential cereal crops grown across the major agro-ecological zones of Nigeria, both in terms of production and consumption. However, significant differences in soil properties and climatic conditions have led to wide fluctuations in the yield performance of maize genotypes annually, making the study of genotype by environment interactions crucial for plant breeders. This research aimed to evaluate the performance and stability of elite, late-maturing maize varieties under contrasting environmental conditions in Southwest Nigeria. In 2019 and 2020, fourteen open-pollinated cultivars were examined in three different sites utilizing a Randomized Complete Block Design (RCBD) with three replications. The commercial check entry (3.73 t ha -1) and the local check variety (3.68 t ha -1) yielded far less than the genotype with the maximum grain yield, which produced 4.24 t ha -1. The tested genotypes and the commercial check exhibited greater stability compared to the local check. Results indicated that the varieties AFLATOXIN SYN-YF2 and PVA SYN 13 demonstrated both high yield and stability, making them valuable resources for breeding programs focused on developing improved maize varieties for small-scale farmers in Nigeria, many of whom have limited access to commercial maize hybrids.

Kaynakça

  • Abakemal D, Shimelis H, Derera J (2016). Genotype-by-environment interaction and yield stability of quality protein maize hybrids developed from tropical-highland adapted inbred lines. Euphytica, 209: 757–769. https://doi.org/10.1007/s10681-016-1673-7
  • Abera N, Odong T, Kasozi, LC (2021). Phenotypic diversity and correlation coefficient analysis of open-pollinated maize varieties in Uganda. Global Journal of Agricultural Research, 9(1): 36–47. https://doi.org/10.37745/gjar.2013
  • Adu GB, Akromah R, Abdulai MS, Obeng-Antwi K, Kena AW, Tengan KML, Alidu H (2013). Assessment of genotype by environment interactions and grain yield performance of extra-early maize (Zea mays L.) hybrids. Journal of Biology, Agriculture and Healthcare, 3(12): 7-15.
  • Akcura M, Taner S, Kaya Y (2011). Evaluation of bread wheat genotypes under irrigated multi-environment conditions using GGE biplot analyses. Agriculture, 98: 35–40.
  • Akintibu TS, Oluwaranti A, Fakorede MAB (2023). The impacts of climatic variability on the grain yield performance of open-pollinated varieties (OPV) of maize in a rainforest location of Nigeria. Journal of Agriculture and Ecology Research International, 24(5): 28–36. https://doi.org/10.9734/JAERI/2023/v24i5539
  • Alam MA, Rahman M, Ahmed S, Jahan N, Khan MA, Islam MR, Alsuhaibani AM, Gaber A, Hossain A (2022). Genetic variation and genotype by environment interaction for agronomic traits in maize (Zea mays L.) hybrids. Plants, 11: 1-16. https://doi.org/10.3390/plants11111522
  • Araus JL, Serret MD, Edmeades GO (2012). Phenotyping maize for adaptation to drought. Frontiers in Physiology, 3: 305. https://doi.org/10.3389/fphys.2012.00305
  • Avnee S, Sood S, Chaudhary DR, Jhorar P, Rana RS (2023). Biofortification: An approach to eradicate micronutrient deficiency. Frontiers in Nutrition, 10: 1233070. https://doi.org/10.3389/fnut.2023.1233070
  • Badu-Apraku B, Fakorede M, Oyekunle M, Akinwale R (2015). Genetic gains in grain yield under nitrogen stress following three decades of breeding for drought tolerance and Striga resistance in early maturing maize. The Journal of Agricultural Science, 1(4): 1–15. https://doi.org/10.1017/S0021859615000593
  • Bankole FA, Olajide OO, Olaoye G (2023). Performance and yield stability of quality protein maize (Zea mays L.) hybrids under rainfed condition. Agriculture (Poľnohospodárstvo), 69(2): 66–76. https://doi.org/10.2478/agri-2023-0006
  • Bassa D, Goa Y (2016). Performance evaluation and adaptation of improved maize (Zea Mays L) varieties for Highland of Alicho, Silti and Analemo Districts of Southern Ethiopia. Journal of Natural Sciences Research, 6(15): 28–32.
  • Badu-Apraku B, Akinwale R (2011). Identification of early-maturing maize inbred lines based on multiple traits under drought and low N environments for hybrid development and population improvement. Canadian Journal of Plant Science, 91(5), 931–942. https://doi.org/10.4141/cjps2011-024
  • Badu-Apraku B, Lum AF, Akinwale RO, Oyekunle M (2011a). Biplot analysis of diallel crosses of early maturing tropical yellow maize inbreds in stress and non-stress environments. Crop Science, 51: 173-188.
  • Badu-Apraku B, Fakorede MAB, Menkir A, Sanogo D (2012). Conduct and management of maize field trials. IITA, Ibadan, Nigeria. pp. 1-59.
  • Badu-Apraku B, Annor B, Oyekunle M, Akinwale RO, Fakorede MAB, Talabi AO, Akaogu IC, Melaku G, Fasanmade Y (2015a). Grouping of early maturing quality protein maize inbreds based on SNP markers and combining ability under multiple environments. Field Crops Research, 183: 169–183.
  • Bagula EM, Majaliwa JGM, Basamba TA, Mondo JGM, Vanlauwe B, Gabiri G, Tumuhairwe B, Mushagalusa GN, Musinguzi P, Akelo S (2022). Water use efficiency of maize (Zea mays L.) crop under selected soil and water conservation practices along the slope gradient in Ruzizi Watershed, Eastern D.R. Congo. Land, 11(10): 1833. https://doi.org/10.3390/land11101833
  • Bänziger M, Edmeades GO, Beck D, Bellon M (2000). Breeding for drought and nitrogen stress tolerance in maize: From theory to practice. CIMMYT.
  • Berger DK, Mokgobu T, de Ridder K, Christie N, Aveling TA (2020). Benefits of maize resistance breeding and chemical control against northern leaf blight in smallholder farms in South Africa. South African Journal of Science, 116(11–12), 1–7. https://doi.org/10.17159/sajs.2020/8286
  • Bocianowski J, Nowosad K, Rejek D (2024). Genotype-environment interaction for grain yield in maize (Zea mays L.) using the additive main effects and multiplicative interaction (AMMI) model. Journal of Applied Genetics,65: 653-664. https://doi.org/10.1007/s13353-024-00899-4
  • Bolaños J, Edmeades GO (1996). The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crops Research, 48(1): 65–80. https://doi.org/10.1016/0378-4290(96)00036-6
  • Bouis HE, Saltzman A (2017). Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Global Food Security, 12: 49–58. https://doi.org/10.1016/j.gfs.2017.01.009
  • Campos H, Cooper M, Habben JE, Edmeades GO, Schussler JR (2004). Improving drought tolerance in maize: A view from industry. Field Crops Research, 90(1): 19-34.
  • Campos H, Cooper M, Edmeades GO, Löffler C, Schussler JR, Ibañez M (2006). Changes in drought tolerance in maize associated with fifty years of breeding for yield in the U.S. Corn Belt. Maydica, 51: 369-381.
  • Chapman SC, Edmeades GO (1999). Selection improves drought tolerance in tropical maize populations: II. Direct and correlated responses among secondary traits. Crop Science, 39(5): 1315-1324.
  • Daemo BB, Ashango Z (2024). Application of AMMI and GGE biplot for genotype by environment interaction and yield stability analysis in potato genotypes grown in Dawuro Zone, Ethiopia. Journal of Agriculture and Food Research, 18(2): 1-9. https://doi.org/10.1016/j.jafr.2024.101287
  • Do Couto DP, Oliveira WB, de Oliveira JS, Guilhen JH, Bernardes CD, Posse SC, Ferreira MF, Ferreira A (2023). Analysis of the effect of the interaction of genotype and environment on the yield stability of maize varieties. genetic resources for breeding. Agronomy, 13(8): 1-15. https://doi.org/10.3390/agronomy13081970
  • Dosho BM, Ifie BE, Asante IK, Danquah EY, Zeleke H (2022). Genotype-by-environment interaction and yield stability for grain yield of quality protein maize hybrids under low and optimum soil nitrogen environments. Journal of Crop Science and Biotechnology, 25: 437–450. https://doi.org/10.1007/s12892-022-00143-7
  • Ebbisa A (2022). Mechanisms underlying cereal/legume intercropping as nature-based biofortification: A review. Food Production, Processing and Nutrition, 4(19): 1-17. https://doi.org/10.1186/s43014-022-00096-y
  • Edmeades GO, Bolaños J, Chapman SC, Lafitte HR, Bänziger M (1999). Selection improves drought tolerance in tropical maize populations: Gains in biomass, grain yield, and harvest index. Crop Science, 39(5): 1306-1315.
  • Eze CE, Akinwale RO, Michel S, Burstmayr H (2020). Grain yield and stability of tropical maize hybrids developed from elite cultivars in contrasting environments under a rainforest agro-ecology. Euphytica, 216: 1-13. https://doi.org/10.1007/s10681-020-02620-y
  • FAOSTAT (2021). FAO Stat. FAO, Rome. http://www.fao.org/faostat (access date: 12.04.2022)
  • Fan XM, Kang MS, Chen H, Zhang Y, Tan J, Xu C (2007). Yield stability of maize hybrids evaluated in multi-environment trials in Yunnan, China. Agronomy Journal, 99: 220-228.
  • Ficiciyan A, Loos J, Sievers-Glotzbach S, Tscharntke T (2018). More than yield: Ecosystem services of traditional versus modern crop varieties revisited. Sustainability, 10(8), 2834. https://doi.org/10.3390/su10082834
  • Gannon B, Kaliwile C, Arscott SA, Schmaelzle S, Chileshe J, Kalungwana N, Mosonda M, Pixley K, Masi C, Tanumihardjo SA (2014). Biofortified orange maize is as efficacious as a vitamin A supplement in Zambian children even in the presence of high liver reserves of vitamin A: A community-based, randomized placebo-controlled trial. The American Journal of Clinical Nutrition, 100(6): 1541–1550. https://doi.org/10.3945/ajcn.114.087379
  • Garoma B, Yadessa L, Tilahun B, Asefa G (2024). Comprehensive breeding approach for resistance to disease in crops: Research review. Journal of Soil Science and Plant Physiology, 6(3): 1-8. https://doi.org/10.36266/JSSPP/181
  • Gaudin ACM, Tolhurst TN, Ker AP, Janovicek K, Tortora C, Martin RC, Deen W (2015). Increasing crop diversity mitigates weather variations and improves yield stability. PLoS ONE 10(2): 1-20. https://doi.org/10.1371/journal.pone.0113261
  • Goredema-Matongera N, Ndhlela T, Magorokosho C, Kamutando CN, van Biljon A, Labuschagne M (2021). Multinutrient biofortification of maize (Zea mays L.) in Africa: Current status, opportunities, and limitations. Nutrients, 13(3): 1039. https://doi.org/10.3390/nu13031039
  • Guo S, Liu Z, Zhou Z, Lu T, Chen S, He M, Zeng X, Chen K, Yu H, Shangguan Y, Dong Y, Chen F, Liu Y, Qin Y (2022). Root System architecture differences of maize cultivars affect yield and nitrogen accumulation in Southwest China. Agriculture, 12: 1-14. https://doi.org/10.3390/agriculture12020209.
  • Hotz C, Chileshe J, Siamusantu W, Palaniappan U, Kafwembe E (2012). Vitamin A intake and infection are associated with plasma retinol among pre-school children in rural Zambia. Public Health Nutrition, 15(9): 1688–1696. https://doi.org/10.1017/S1368980012002731
  • Hodge C, Taylor C (2023). Vitamin A deficiency. In StatPearls [Internet]. StatPearls Publishing. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK567789/
  • Huang Z, Liu Y, Qi, G, Brand D, Zheng SG (2018). Role of vitamin A in the immune system. Journal of Clinical Medicine, 7(9): 258. https://doi.org/10.3390/jcm7090258
  • Hudson AI, Odell SG, Dubreuil P, Tixier MH, Praud S, Runcie DE, Ross-Ibarra J (2022). Analysis of genotype-by-environment interactions in a maize mapping population. G3: Genes, Genomes, Genetics, 12(3): jkac013. https://doi.org/10.1093/g3journal/jkac013
  • IITA (2009). Crops. http://www.iita.org (Access date: 01.05.2014).
  • IITA (2020). IITA-BIP sets record for maize production per hectare in Nigeria. https://www.iita.org/news-item/iita-bip-sets-record-for-maize-production-per-hectare-in-nigeria/ (access date:02.12.2021)
  • Koroma MS, Swaray M, Akromah R, Obeng-Antwi K (2017). Genotype by environment interaction and stability of extra-early maize hybrids (Zea mays L.) for yield evaluated under irrigation. International Journal of Environment, Agriculture and Biotechnology, 2: 2573-2580. https://doi.org/10.22161/ijeab/2.5.39.
  • Kutka F (2011). Open-Pollinated vs. hybrid maize cultivars. Sustainability 3: 1531–1554. https://doi.org/10.3390/su3091531
  • Kumar B, Choudhary M, Kumar P, Kumar S, Sravani D, Vinodhana NK, Kumar GS, Gami R, Vyas M, Jat BS, Dagla MC, Rakshit S (2024). GGE biplot analysis and selection indices for yield and stability assessment of maize (Zea mays L.) genotypes under drought and irrigated conditions. Indian Journal of Genetics and Plant Breeding, 84(02): 209–215. https://doi.org/10.31742/ISGPB.84.2.8
  • Jiang S, Zhang H, Ni P, Yu S, Dong H, Zhang A, Cao H, Zhang L, Ruan Y, Cui Z (2020). Genome-wide association study dissects the genetic architecture of maize husk tightness. Frontiers in Plant Science, 11:861. https://doi.org/10.3389/fpls.2020.00861
  • Kamara AY, Kamai N, Omoigui LO, Togola A, Onyibe JE (2020). Guide to maize production in northern Nigeria. International Institute of Tropical Agriculture (IITA).
  • Liu Y, Hou P, Huang G, Zhong X., Li, H, Zhao J, Li S, Mei X (2021). Maize grain yield and water use efficiency in relation to climatic factors and plant population in northern China. Journal of Integrative Agriculture, 20(12): 3156–3169. https://doi.org/10.1016/S2095-3119(20)63428-1
  • Ljubičić N, Popović V, Kostić M, Pajić M, Bude M, Gligorević K, Dražić M, Bižić M, Crnojević V (2023). Multivariate interaction analysis of Zea mays L. genotypes growth productivity in different environmental conditions. Plants, 12(11): 1-25.
  • Ma C, Liu C, Ye Z (2024). Influence of Genotype × environment interaction on yield stability of maize hybrids with AMMI model and GGE biplot. Agronomy, 14: 1-16. Doi: 10.3390/agronomy14051000
  • Mani JR, Issah FO, Abdussalam Z, Damisa MA (2022). Factors influencing farmer participation in maize production in Kaduna State, Nigeria. Journal of Agriculture and Environment 18(1): 1–11.
  • Mekonnen TW, van Biljon A, Ceronio G Labuschagne M (2023). Effects of planting date, environments, and their interaction on grain yield and quality traits of maize hybrids. Heliyon, 9(11): e21660. https://doi.org/10.1016/j.heliyon.2023.e21660
  • Mühleisen J, Piepho H-P, Maurer H-P, Longin CFH, Reif JC (2014a). Yield stability of hybrids versus lines in wheat, barley and triticale. Theoretical and Applied Genetics, 127: 309–316.
  • Obour PB, Arthur IK, Owusu K (2022). The 2020 Maize production failure in Ghana: A case study of ejura-sekyedumase municipality. Sustainability, 14(6): 3514. https://doi.org/10.3390/su14063514
  • Olakojo SA, Iken JE (2001). Yield performance and stability of some improved maize varieties. Moor Journal of Agricultural Research, 2: 21-24.
  • Olaoye G, Menkir A, Ajala SO, Jacob S (2009). Evaluation of local maize (Zea mays L.) varieties from Burkina Faso as source of tolerance to drought. Journal of Applied Bioscience, 17: 887-898.
  • Olaniyan AB (2015). Maize: Panacea for hunger in Nigeria. African Journal of Plant Science, 9(3): 155–174.
  • Onyeneke RU, Amadi MU, Anosike FC (2019). Biofortification in Nigeria: A systematic review. AIMS Agriculture and Food, 4(4): 892–906. https://doi.org/10.3934/agrfood.2019.4.892
  • Oyekunle M, Haruna A, Badu-Apraku B, Usman IS, Mani H, Ado SG, Olaoye G, Obeng-Antwi K, Abdulmalik RO, Ahmed HO (2017). Assessment of early-maturing maize hybrids and testing sites using GGE biplot analysis. Crop Science, 57: 2942-2950. https://doi.org/10.2135/cropsci2016.12.1014
  • Prasanna BM, Palacios-Rojas N, Hossain F, Muthusamy V, Menkir A, Dhliwayo T, Ndhlela T, San Vicente F, Nair SK, Vivek BS, Zhang X, Olsen M, Fan X (2020). Molecular breeding for nutritionally enriched maize: status and prospects. Frontiers in Genetics, 10: 1-16. https://doi.org/10.3389/fgene.2019.01392
  • Rahman MM, Wahed MA, Fuchs GJ, Baqui AH, Alvarez JO (2002). Synergistic effect of zinc and vitamin A on the biochemical indexes of vitamin A nutrition in children. American Journal of Clinical Nutrition, 75(1), 92–98. https://doi.org/10.1093/ajcn/75.1.92
  • Shrestha J (2013). Genotype by environment interaction and yield stability analysis of quality protein maize genotypes in the Terai region of Nepal. International Journal of Applied Sciences and Biotechnology, 1(2): 75–79.
  • Sibiya J, Tongoona P, Derera J, Rij N (2012). Genetic analysis and genotype by environment (G x E) for grey leaf spot disease resistance in elite African maize (Zea mays L.) germplasm. Euphytica, 185: 349–362.
  • Șimon A, Moraru PI, Ceclan A, Russu F, Chețan F, Bărdaș M, Popa A, Rusu T, Pop AI, Bogdan I (2023). The impact of climatic factors on the development stages of maize crop in the Transylvanian plain. Agronomy, 13(6): 1612. https://doi.org/10.3390/agronomy13061612
  • Song P, Adeloye D, Li S, Zhao D, Ye X, Pan Q, Qiu Y, Zhang R, Rudan I, Global Health Epidemiology Research Group (GHERG) (2023). The prevalence of vitamin A deficiency and its public health significance in children in low- and middle-income countries: A systematic review and modelling analysis. Journal of Global Health, 13: 04084. https://doi.org/10.7189/jogh.13.04084
  • Ssentongo P, Ba DM, Ssentongo AE, Fronterre C, Whalen A, Yang Y, Ericson JE, Chinchilli VM (2020). Association of vitamin A deficiency with early childhood stunting in Uganda: A population-based cross-sectional study. PLoS ONE, 15(5): e0233615. https://doi.org/10.1371/journal.pone.0233615
  • Statista (2023). Production quantity of maize in Nigeria. Available at https://www.statista.com/statistics/1300743/production-volume-of-maize-in-nigeria/ (access date: 05.03.2025).
  • Stubbs CJ, Kunduru B, Bokros N, Verges V, Porter J, Cook DD, DeBolt S, McMahan C, Sekhon RS, Robertson DJ (2023). Moving toward short stature maize: The effect of plant height on maize stalk lodging resistance. Field Crops Research, 300:109008. https://doi.org/10.1016/j.fcr.2023.109008
  • Tao K, Li Y, Hu Y, Li Y, Zhang D, Li C, He G, Song Y, Shi Y, Li Y, Wang T, Lu Y, Liu X (2023). Overexpression of ZmEXPA5 reduces anthesis-silking interval and increases grain yield under drought and well-watered conditions in maize. Molecular Breeding, 43(12): 84. https://doi.org/10.1007/s11032-023-01432-x
  • Tollenaar M, Wu J (1999). Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Science, 39(6): 1597-1604.
  • Trethowan R, Crossa J, van Ginkel M, Rajaram S (2001). Relationships among bread wheat international yield testing locations in dry areas. Crop Science 41: 1461–1469. https://doi.org/10.2135/cropsci2001.4151461x.
  • Villamor E, Fawzi WW (2000). Vitamin A supplementation: Implications for morbidity and mortality in children. The Journal of Infectious Diseases, 182(Suppl_1): S122–S133. https://doi.org/10.1086/315921
  • Wirth JP, Petry N, Tanumihardjo SA, Rogers LM, McLean E, Greig A, Garrett GS, Klemm RD, Rohner F (2017). Vitamin A supplementation programs and country-level evidence of vitamin A deficiency. Nutrients, 9(3): 190. https://doi.org/10.3390/nu9030190
  • Wossen T, Menkir A, Alene A, Abdoulaye T, Ajala S, Badu-Apraku B, Gedil M, Mengesha W, Meseka S (2023). Drivers of transformation of the maize sector in Nigeria. Global Food Security, 38: 100713. https://doi.org/10.1016/j.gfs.2023.100713
  • Xue J, Ming B, Xie R, Wang K, Hou P, Li S (2020). Evaluation of maize lodging resistance based on the critical wind speed of stalk breaking during the late growth stage. Plant Methods, 16, 148: 1-12. https://doi.org/10.1186/s13007-020-00678-0
  • Yan W, Rajcan I (2002). Biplot evaluation of test sites and trait relations of soybean in Ontario. Crop Science 42: 11–20.
  • Yan W, Tinker NA, Falk D (2005). QTL identification, mega-environment classification, and strategy development for marker-based selection using biplots. Journal of Crop Improvement 14: 299–324.
  • Yan W, Tinker NA (2006). Biplot analysis of multi-environment trial data: Principles and applications. Canadian Journal of Plant Science 86(3): 623–645. https://doi.org/10.4141/P05-169
  • Yan W, Kang MS, Ma B, Woods S, Cornelius PL (2007). GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Science 47: 643–655.
  • Yan W (2014). Crop variety trials: data management and analysis. Chichester: John Wiley and Sons.
  • Yong H, Zhang F, Tang J, Yang Z, Zhao X, Li M, Zhang D, Hao Z, Weng J, Li X (2019). Breeding potential of inbred lines derived from five maize (Zea mays L.) populations. Euphytica, 215(1): 1–12. https://doi.org/10.1007/s10681-018-2319-8.
  • Zhang P, Gu S, Wang Y, Xu C, Zhao Y, Liu X, Wang P, Huang S (2023). The relationships between maize (Zea mays L.) lodging resistance and yield formation depend on dry matter allocation to ear and stem. The Crop Journal, 11(1): 258–268. https://doi.org/10.1016/j.cj.2022.04.020

Yield Stability and Agronomic Performance of Late-Maturing Pro-Vitamin A Maize in Southwest Nigeria Using GGE Biplot Analysis

Yıl 2025, Cilt: 39 Sayı: 1, 208 - 228, 31.03.2025

Öz

Kaynakça

  • Abakemal D, Shimelis H, Derera J (2016). Genotype-by-environment interaction and yield stability of quality protein maize hybrids developed from tropical-highland adapted inbred lines. Euphytica, 209: 757–769. https://doi.org/10.1007/s10681-016-1673-7
  • Abera N, Odong T, Kasozi, LC (2021). Phenotypic diversity and correlation coefficient analysis of open-pollinated maize varieties in Uganda. Global Journal of Agricultural Research, 9(1): 36–47. https://doi.org/10.37745/gjar.2013
  • Adu GB, Akromah R, Abdulai MS, Obeng-Antwi K, Kena AW, Tengan KML, Alidu H (2013). Assessment of genotype by environment interactions and grain yield performance of extra-early maize (Zea mays L.) hybrids. Journal of Biology, Agriculture and Healthcare, 3(12): 7-15.
  • Akcura M, Taner S, Kaya Y (2011). Evaluation of bread wheat genotypes under irrigated multi-environment conditions using GGE biplot analyses. Agriculture, 98: 35–40.
  • Akintibu TS, Oluwaranti A, Fakorede MAB (2023). The impacts of climatic variability on the grain yield performance of open-pollinated varieties (OPV) of maize in a rainforest location of Nigeria. Journal of Agriculture and Ecology Research International, 24(5): 28–36. https://doi.org/10.9734/JAERI/2023/v24i5539
  • Alam MA, Rahman M, Ahmed S, Jahan N, Khan MA, Islam MR, Alsuhaibani AM, Gaber A, Hossain A (2022). Genetic variation and genotype by environment interaction for agronomic traits in maize (Zea mays L.) hybrids. Plants, 11: 1-16. https://doi.org/10.3390/plants11111522
  • Araus JL, Serret MD, Edmeades GO (2012). Phenotyping maize for adaptation to drought. Frontiers in Physiology, 3: 305. https://doi.org/10.3389/fphys.2012.00305
  • Avnee S, Sood S, Chaudhary DR, Jhorar P, Rana RS (2023). Biofortification: An approach to eradicate micronutrient deficiency. Frontiers in Nutrition, 10: 1233070. https://doi.org/10.3389/fnut.2023.1233070
  • Badu-Apraku B, Fakorede M, Oyekunle M, Akinwale R (2015). Genetic gains in grain yield under nitrogen stress following three decades of breeding for drought tolerance and Striga resistance in early maturing maize. The Journal of Agricultural Science, 1(4): 1–15. https://doi.org/10.1017/S0021859615000593
  • Bankole FA, Olajide OO, Olaoye G (2023). Performance and yield stability of quality protein maize (Zea mays L.) hybrids under rainfed condition. Agriculture (Poľnohospodárstvo), 69(2): 66–76. https://doi.org/10.2478/agri-2023-0006
  • Bassa D, Goa Y (2016). Performance evaluation and adaptation of improved maize (Zea Mays L) varieties for Highland of Alicho, Silti and Analemo Districts of Southern Ethiopia. Journal of Natural Sciences Research, 6(15): 28–32.
  • Badu-Apraku B, Akinwale R (2011). Identification of early-maturing maize inbred lines based on multiple traits under drought and low N environments for hybrid development and population improvement. Canadian Journal of Plant Science, 91(5), 931–942. https://doi.org/10.4141/cjps2011-024
  • Badu-Apraku B, Lum AF, Akinwale RO, Oyekunle M (2011a). Biplot analysis of diallel crosses of early maturing tropical yellow maize inbreds in stress and non-stress environments. Crop Science, 51: 173-188.
  • Badu-Apraku B, Fakorede MAB, Menkir A, Sanogo D (2012). Conduct and management of maize field trials. IITA, Ibadan, Nigeria. pp. 1-59.
  • Badu-Apraku B, Annor B, Oyekunle M, Akinwale RO, Fakorede MAB, Talabi AO, Akaogu IC, Melaku G, Fasanmade Y (2015a). Grouping of early maturing quality protein maize inbreds based on SNP markers and combining ability under multiple environments. Field Crops Research, 183: 169–183.
  • Bagula EM, Majaliwa JGM, Basamba TA, Mondo JGM, Vanlauwe B, Gabiri G, Tumuhairwe B, Mushagalusa GN, Musinguzi P, Akelo S (2022). Water use efficiency of maize (Zea mays L.) crop under selected soil and water conservation practices along the slope gradient in Ruzizi Watershed, Eastern D.R. Congo. Land, 11(10): 1833. https://doi.org/10.3390/land11101833
  • Bänziger M, Edmeades GO, Beck D, Bellon M (2000). Breeding for drought and nitrogen stress tolerance in maize: From theory to practice. CIMMYT.
  • Berger DK, Mokgobu T, de Ridder K, Christie N, Aveling TA (2020). Benefits of maize resistance breeding and chemical control against northern leaf blight in smallholder farms in South Africa. South African Journal of Science, 116(11–12), 1–7. https://doi.org/10.17159/sajs.2020/8286
  • Bocianowski J, Nowosad K, Rejek D (2024). Genotype-environment interaction for grain yield in maize (Zea mays L.) using the additive main effects and multiplicative interaction (AMMI) model. Journal of Applied Genetics,65: 653-664. https://doi.org/10.1007/s13353-024-00899-4
  • Bolaños J, Edmeades GO (1996). The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crops Research, 48(1): 65–80. https://doi.org/10.1016/0378-4290(96)00036-6
  • Bouis HE, Saltzman A (2017). Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Global Food Security, 12: 49–58. https://doi.org/10.1016/j.gfs.2017.01.009
  • Campos H, Cooper M, Habben JE, Edmeades GO, Schussler JR (2004). Improving drought tolerance in maize: A view from industry. Field Crops Research, 90(1): 19-34.
  • Campos H, Cooper M, Edmeades GO, Löffler C, Schussler JR, Ibañez M (2006). Changes in drought tolerance in maize associated with fifty years of breeding for yield in the U.S. Corn Belt. Maydica, 51: 369-381.
  • Chapman SC, Edmeades GO (1999). Selection improves drought tolerance in tropical maize populations: II. Direct and correlated responses among secondary traits. Crop Science, 39(5): 1315-1324.
  • Daemo BB, Ashango Z (2024). Application of AMMI and GGE biplot for genotype by environment interaction and yield stability analysis in potato genotypes grown in Dawuro Zone, Ethiopia. Journal of Agriculture and Food Research, 18(2): 1-9. https://doi.org/10.1016/j.jafr.2024.101287
  • Do Couto DP, Oliveira WB, de Oliveira JS, Guilhen JH, Bernardes CD, Posse SC, Ferreira MF, Ferreira A (2023). Analysis of the effect of the interaction of genotype and environment on the yield stability of maize varieties. genetic resources for breeding. Agronomy, 13(8): 1-15. https://doi.org/10.3390/agronomy13081970
  • Dosho BM, Ifie BE, Asante IK, Danquah EY, Zeleke H (2022). Genotype-by-environment interaction and yield stability for grain yield of quality protein maize hybrids under low and optimum soil nitrogen environments. Journal of Crop Science and Biotechnology, 25: 437–450. https://doi.org/10.1007/s12892-022-00143-7
  • Ebbisa A (2022). Mechanisms underlying cereal/legume intercropping as nature-based biofortification: A review. Food Production, Processing and Nutrition, 4(19): 1-17. https://doi.org/10.1186/s43014-022-00096-y
  • Edmeades GO, Bolaños J, Chapman SC, Lafitte HR, Bänziger M (1999). Selection improves drought tolerance in tropical maize populations: Gains in biomass, grain yield, and harvest index. Crop Science, 39(5): 1306-1315.
  • Eze CE, Akinwale RO, Michel S, Burstmayr H (2020). Grain yield and stability of tropical maize hybrids developed from elite cultivars in contrasting environments under a rainforest agro-ecology. Euphytica, 216: 1-13. https://doi.org/10.1007/s10681-020-02620-y
  • FAOSTAT (2021). FAO Stat. FAO, Rome. http://www.fao.org/faostat (access date: 12.04.2022)
  • Fan XM, Kang MS, Chen H, Zhang Y, Tan J, Xu C (2007). Yield stability of maize hybrids evaluated in multi-environment trials in Yunnan, China. Agronomy Journal, 99: 220-228.
  • Ficiciyan A, Loos J, Sievers-Glotzbach S, Tscharntke T (2018). More than yield: Ecosystem services of traditional versus modern crop varieties revisited. Sustainability, 10(8), 2834. https://doi.org/10.3390/su10082834
  • Gannon B, Kaliwile C, Arscott SA, Schmaelzle S, Chileshe J, Kalungwana N, Mosonda M, Pixley K, Masi C, Tanumihardjo SA (2014). Biofortified orange maize is as efficacious as a vitamin A supplement in Zambian children even in the presence of high liver reserves of vitamin A: A community-based, randomized placebo-controlled trial. The American Journal of Clinical Nutrition, 100(6): 1541–1550. https://doi.org/10.3945/ajcn.114.087379
  • Garoma B, Yadessa L, Tilahun B, Asefa G (2024). Comprehensive breeding approach for resistance to disease in crops: Research review. Journal of Soil Science and Plant Physiology, 6(3): 1-8. https://doi.org/10.36266/JSSPP/181
  • Gaudin ACM, Tolhurst TN, Ker AP, Janovicek K, Tortora C, Martin RC, Deen W (2015). Increasing crop diversity mitigates weather variations and improves yield stability. PLoS ONE 10(2): 1-20. https://doi.org/10.1371/journal.pone.0113261
  • Goredema-Matongera N, Ndhlela T, Magorokosho C, Kamutando CN, van Biljon A, Labuschagne M (2021). Multinutrient biofortification of maize (Zea mays L.) in Africa: Current status, opportunities, and limitations. Nutrients, 13(3): 1039. https://doi.org/10.3390/nu13031039
  • Guo S, Liu Z, Zhou Z, Lu T, Chen S, He M, Zeng X, Chen K, Yu H, Shangguan Y, Dong Y, Chen F, Liu Y, Qin Y (2022). Root System architecture differences of maize cultivars affect yield and nitrogen accumulation in Southwest China. Agriculture, 12: 1-14. https://doi.org/10.3390/agriculture12020209.
  • Hotz C, Chileshe J, Siamusantu W, Palaniappan U, Kafwembe E (2012). Vitamin A intake and infection are associated with plasma retinol among pre-school children in rural Zambia. Public Health Nutrition, 15(9): 1688–1696. https://doi.org/10.1017/S1368980012002731
  • Hodge C, Taylor C (2023). Vitamin A deficiency. In StatPearls [Internet]. StatPearls Publishing. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK567789/
  • Huang Z, Liu Y, Qi, G, Brand D, Zheng SG (2018). Role of vitamin A in the immune system. Journal of Clinical Medicine, 7(9): 258. https://doi.org/10.3390/jcm7090258
  • Hudson AI, Odell SG, Dubreuil P, Tixier MH, Praud S, Runcie DE, Ross-Ibarra J (2022). Analysis of genotype-by-environment interactions in a maize mapping population. G3: Genes, Genomes, Genetics, 12(3): jkac013. https://doi.org/10.1093/g3journal/jkac013
  • IITA (2009). Crops. http://www.iita.org (Access date: 01.05.2014).
  • IITA (2020). IITA-BIP sets record for maize production per hectare in Nigeria. https://www.iita.org/news-item/iita-bip-sets-record-for-maize-production-per-hectare-in-nigeria/ (access date:02.12.2021)
  • Koroma MS, Swaray M, Akromah R, Obeng-Antwi K (2017). Genotype by environment interaction and stability of extra-early maize hybrids (Zea mays L.) for yield evaluated under irrigation. International Journal of Environment, Agriculture and Biotechnology, 2: 2573-2580. https://doi.org/10.22161/ijeab/2.5.39.
  • Kutka F (2011). Open-Pollinated vs. hybrid maize cultivars. Sustainability 3: 1531–1554. https://doi.org/10.3390/su3091531
  • Kumar B, Choudhary M, Kumar P, Kumar S, Sravani D, Vinodhana NK, Kumar GS, Gami R, Vyas M, Jat BS, Dagla MC, Rakshit S (2024). GGE biplot analysis and selection indices for yield and stability assessment of maize (Zea mays L.) genotypes under drought and irrigated conditions. Indian Journal of Genetics and Plant Breeding, 84(02): 209–215. https://doi.org/10.31742/ISGPB.84.2.8
  • Jiang S, Zhang H, Ni P, Yu S, Dong H, Zhang A, Cao H, Zhang L, Ruan Y, Cui Z (2020). Genome-wide association study dissects the genetic architecture of maize husk tightness. Frontiers in Plant Science, 11:861. https://doi.org/10.3389/fpls.2020.00861
  • Kamara AY, Kamai N, Omoigui LO, Togola A, Onyibe JE (2020). Guide to maize production in northern Nigeria. International Institute of Tropical Agriculture (IITA).
  • Liu Y, Hou P, Huang G, Zhong X., Li, H, Zhao J, Li S, Mei X (2021). Maize grain yield and water use efficiency in relation to climatic factors and plant population in northern China. Journal of Integrative Agriculture, 20(12): 3156–3169. https://doi.org/10.1016/S2095-3119(20)63428-1
  • Ljubičić N, Popović V, Kostić M, Pajić M, Bude M, Gligorević K, Dražić M, Bižić M, Crnojević V (2023). Multivariate interaction analysis of Zea mays L. genotypes growth productivity in different environmental conditions. Plants, 12(11): 1-25.
  • Ma C, Liu C, Ye Z (2024). Influence of Genotype × environment interaction on yield stability of maize hybrids with AMMI model and GGE biplot. Agronomy, 14: 1-16. Doi: 10.3390/agronomy14051000
  • Mani JR, Issah FO, Abdussalam Z, Damisa MA (2022). Factors influencing farmer participation in maize production in Kaduna State, Nigeria. Journal of Agriculture and Environment 18(1): 1–11.
  • Mekonnen TW, van Biljon A, Ceronio G Labuschagne M (2023). Effects of planting date, environments, and their interaction on grain yield and quality traits of maize hybrids. Heliyon, 9(11): e21660. https://doi.org/10.1016/j.heliyon.2023.e21660
  • Mühleisen J, Piepho H-P, Maurer H-P, Longin CFH, Reif JC (2014a). Yield stability of hybrids versus lines in wheat, barley and triticale. Theoretical and Applied Genetics, 127: 309–316.
  • Obour PB, Arthur IK, Owusu K (2022). The 2020 Maize production failure in Ghana: A case study of ejura-sekyedumase municipality. Sustainability, 14(6): 3514. https://doi.org/10.3390/su14063514
  • Olakojo SA, Iken JE (2001). Yield performance and stability of some improved maize varieties. Moor Journal of Agricultural Research, 2: 21-24.
  • Olaoye G, Menkir A, Ajala SO, Jacob S (2009). Evaluation of local maize (Zea mays L.) varieties from Burkina Faso as source of tolerance to drought. Journal of Applied Bioscience, 17: 887-898.
  • Olaniyan AB (2015). Maize: Panacea for hunger in Nigeria. African Journal of Plant Science, 9(3): 155–174.
  • Onyeneke RU, Amadi MU, Anosike FC (2019). Biofortification in Nigeria: A systematic review. AIMS Agriculture and Food, 4(4): 892–906. https://doi.org/10.3934/agrfood.2019.4.892
  • Oyekunle M, Haruna A, Badu-Apraku B, Usman IS, Mani H, Ado SG, Olaoye G, Obeng-Antwi K, Abdulmalik RO, Ahmed HO (2017). Assessment of early-maturing maize hybrids and testing sites using GGE biplot analysis. Crop Science, 57: 2942-2950. https://doi.org/10.2135/cropsci2016.12.1014
  • Prasanna BM, Palacios-Rojas N, Hossain F, Muthusamy V, Menkir A, Dhliwayo T, Ndhlela T, San Vicente F, Nair SK, Vivek BS, Zhang X, Olsen M, Fan X (2020). Molecular breeding for nutritionally enriched maize: status and prospects. Frontiers in Genetics, 10: 1-16. https://doi.org/10.3389/fgene.2019.01392
  • Rahman MM, Wahed MA, Fuchs GJ, Baqui AH, Alvarez JO (2002). Synergistic effect of zinc and vitamin A on the biochemical indexes of vitamin A nutrition in children. American Journal of Clinical Nutrition, 75(1), 92–98. https://doi.org/10.1093/ajcn/75.1.92
  • Shrestha J (2013). Genotype by environment interaction and yield stability analysis of quality protein maize genotypes in the Terai region of Nepal. International Journal of Applied Sciences and Biotechnology, 1(2): 75–79.
  • Sibiya J, Tongoona P, Derera J, Rij N (2012). Genetic analysis and genotype by environment (G x E) for grey leaf spot disease resistance in elite African maize (Zea mays L.) germplasm. Euphytica, 185: 349–362.
  • Șimon A, Moraru PI, Ceclan A, Russu F, Chețan F, Bărdaș M, Popa A, Rusu T, Pop AI, Bogdan I (2023). The impact of climatic factors on the development stages of maize crop in the Transylvanian plain. Agronomy, 13(6): 1612. https://doi.org/10.3390/agronomy13061612
  • Song P, Adeloye D, Li S, Zhao D, Ye X, Pan Q, Qiu Y, Zhang R, Rudan I, Global Health Epidemiology Research Group (GHERG) (2023). The prevalence of vitamin A deficiency and its public health significance in children in low- and middle-income countries: A systematic review and modelling analysis. Journal of Global Health, 13: 04084. https://doi.org/10.7189/jogh.13.04084
  • Ssentongo P, Ba DM, Ssentongo AE, Fronterre C, Whalen A, Yang Y, Ericson JE, Chinchilli VM (2020). Association of vitamin A deficiency with early childhood stunting in Uganda: A population-based cross-sectional study. PLoS ONE, 15(5): e0233615. https://doi.org/10.1371/journal.pone.0233615
  • Statista (2023). Production quantity of maize in Nigeria. Available at https://www.statista.com/statistics/1300743/production-volume-of-maize-in-nigeria/ (access date: 05.03.2025).
  • Stubbs CJ, Kunduru B, Bokros N, Verges V, Porter J, Cook DD, DeBolt S, McMahan C, Sekhon RS, Robertson DJ (2023). Moving toward short stature maize: The effect of plant height on maize stalk lodging resistance. Field Crops Research, 300:109008. https://doi.org/10.1016/j.fcr.2023.109008
  • Tao K, Li Y, Hu Y, Li Y, Zhang D, Li C, He G, Song Y, Shi Y, Li Y, Wang T, Lu Y, Liu X (2023). Overexpression of ZmEXPA5 reduces anthesis-silking interval and increases grain yield under drought and well-watered conditions in maize. Molecular Breeding, 43(12): 84. https://doi.org/10.1007/s11032-023-01432-x
  • Tollenaar M, Wu J (1999). Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Science, 39(6): 1597-1604.
  • Trethowan R, Crossa J, van Ginkel M, Rajaram S (2001). Relationships among bread wheat international yield testing locations in dry areas. Crop Science 41: 1461–1469. https://doi.org/10.2135/cropsci2001.4151461x.
  • Villamor E, Fawzi WW (2000). Vitamin A supplementation: Implications for morbidity and mortality in children. The Journal of Infectious Diseases, 182(Suppl_1): S122–S133. https://doi.org/10.1086/315921
  • Wirth JP, Petry N, Tanumihardjo SA, Rogers LM, McLean E, Greig A, Garrett GS, Klemm RD, Rohner F (2017). Vitamin A supplementation programs and country-level evidence of vitamin A deficiency. Nutrients, 9(3): 190. https://doi.org/10.3390/nu9030190
  • Wossen T, Menkir A, Alene A, Abdoulaye T, Ajala S, Badu-Apraku B, Gedil M, Mengesha W, Meseka S (2023). Drivers of transformation of the maize sector in Nigeria. Global Food Security, 38: 100713. https://doi.org/10.1016/j.gfs.2023.100713
  • Xue J, Ming B, Xie R, Wang K, Hou P, Li S (2020). Evaluation of maize lodging resistance based on the critical wind speed of stalk breaking during the late growth stage. Plant Methods, 16, 148: 1-12. https://doi.org/10.1186/s13007-020-00678-0
  • Yan W, Rajcan I (2002). Biplot evaluation of test sites and trait relations of soybean in Ontario. Crop Science 42: 11–20.
  • Yan W, Tinker NA, Falk D (2005). QTL identification, mega-environment classification, and strategy development for marker-based selection using biplots. Journal of Crop Improvement 14: 299–324.
  • Yan W, Tinker NA (2006). Biplot analysis of multi-environment trial data: Principles and applications. Canadian Journal of Plant Science 86(3): 623–645. https://doi.org/10.4141/P05-169
  • Yan W, Kang MS, Ma B, Woods S, Cornelius PL (2007). GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Science 47: 643–655.
  • Yan W (2014). Crop variety trials: data management and analysis. Chichester: John Wiley and Sons.
  • Yong H, Zhang F, Tang J, Yang Z, Zhao X, Li M, Zhang D, Hao Z, Weng J, Li X (2019). Breeding potential of inbred lines derived from five maize (Zea mays L.) populations. Euphytica, 215(1): 1–12. https://doi.org/10.1007/s10681-018-2319-8.
  • Zhang P, Gu S, Wang Y, Xu C, Zhao Y, Liu X, Wang P, Huang S (2023). The relationships between maize (Zea mays L.) lodging resistance and yield formation depend on dry matter allocation to ear and stem. The Crop Journal, 11(1): 258–268. https://doi.org/10.1016/j.cj.2022.04.020
Toplam 84 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tarımda Bitki Islahı
Bölüm Araştırma Makalesi
Yazarlar

Adewole Akintunde 0000-0002-3862-2476

Oloruntoba Olakojo Bu kişi benim 0009-0009-1906-3902

Kolawole Godonu Bu kişi benim 0009-0000-7496-4716

Samuel Olakojo Bu kişi benim 0000-0002-9510-7075

Omolayo Ariyo Bu kişi benim 0000-0003-4557-4254

Erken Görünüm Tarihi 24 Mart 2025
Yayımlanma Tarihi 31 Mart 2025
Gönderilme Tarihi 23 Ekim 2024
Kabul Tarihi 19 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 39 Sayı: 1

Kaynak Göster

EndNote Akintunde A, Olakojo O, Godonu K, Olakojo S, Ariyo O (01 Mart 2025) Yield Stability and Agronomic Performance of Late-Maturing Pro-Vitamin A Maize in Southwest Nigeria Using GGE Biplot Analysis. Selcuk Journal of Agriculture and Food Sciences 39 1 208–228.

Selcuk Journal of Agriculture and Food Sciences Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı (CC BY NC) ile lisanslanmıştır.