Araştırma Makalesi
BibTex RIS Kaynak Göster

Comparative Analysis of Empirical and AI-Supported Models in Global Solar Radiation Prediction for İzmir Province

Yıl 2025, Cilt: 39 Sayı: 1, 108 - 120

Öz

Bu çalışmada, İzmir ili için küresel güneş radyasyonu tahmini yapabilecek farklı modellerin performansları karşılaştırmalı olarak analiz edilmiştir. ATATEK-Solar yazılımı kullanılarak, literatürde yaygın olarak kullanılan 14 ampirik model ve yeni geliştirilen bir yapay zeka destekli model test edilmiştir. Her model, üç farklı optimizasyon algoritması (Nelder-Mead Simplex, Pattern Search, Simulated Annealing) kullanılarak analiz edilmiştir. Çalışmada, Meteoroloji Genel Müdürlüğü’nden elde edilen uzun dönemli ortalama meteorolojik veriler kullanılmıştır. Analiz sonuçlarına göre, Model 15, RMSE: 0.1451 ve R²: 0.9995 değerleri ile en başarılı tahminleri gerçekleştirmiştir. Bunu, RMSE: 0.2016 ve R²: 0.9990 değerleriyle Model 5 ve RMSE: 0.2017 ve R²: 0.9990 değerleriyle Model 6 takip etmiştir. Modellerin aylık bazdaki performansları incelendiğinde, en düşük tahmin hatalarının ilkbahar ve yaz aylarında gerçekleştiği gözlemlenmiştir. Çalışmanın sonucunda, İzmir ilinin güneş enerjisi potansiyelinin değerlendirilmesi ve sistem tasarımı için Model 15’in kullanılması önerilmektedir.

Kaynakça

  • Almorox J, Hontoria C (2004). Global solar radiation estimation using sunshine duration in Spain. Energy Conversion and Management, 45(9–10): 1529–1535. https://doi.org/10.1016/j.enconman.2003.08.022
  • Almorox J, Bocco M, Willington E (2013). Estimation of daily global solar radiation from measured temperatures at Cañada de Luque, Córdoba, Argentina. Renewable Energy, 60: 382–387.
  • Ampratwum DB, Dorvlo ASS (1999). Estimation of solar radiation from the number of sunshine hours. Applied Energy, 63: 161–167.
  • Angstrom A (1924). Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation. Quarterly Journal of the Royal Meteorological Society, 50(210): 121–126.
  • Bristow KL, Campbell G (1984). On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agricultural and Forest Meteorology, 31(2): 159–166.
  • Coppolino S (1994). A new correlation between clearness index and relative sunshine. Renewable Energy, 4(4): 417–423.
  • Dogniaux R, Lemoine M (1983). Classification of radiation sites in terms of different indices of atmospheric transparency. Solar Energy Research and Development in the European Community, Series F, Vol. 2. Dordrecht, Holland: Reidel.
  • Duffie JA, Beckman WA (2006). Solar engineering of thermal processes (3rd ed.). New York: John Wiley & Sons. Elagib N, Mansell M (2000). New approaches for estimating global solar radiation across Sudan. Energy Conversion and Management, 41(5): 419–434.
  • El-Metwally M (2005). Sunshine and global solar radiation estimation at different sites in Egypt. Journal of Atmospheric and Solar-Terrestrial Physics, 67(14): 1331–1342.
  • Ersan R, Külcü R (2024). Development of new models using empirical modeling of global solar radiation and its application in Usak city, Turkey. Tekirdağ Ziraat Fakültesi Dergisi, 21(5): 1235-1251. https://doi.org/10.33462/jotaf.1512442
  • Ertürk S, Kara H, Akkuş C, Genç G (2023). Türkiye’de farklı iklim kuşakları için yapay sinir ağları kullanılarak güneş ışınımının tahmini. Gazi University Journal of Science Part C: Design and Technology, 11(3): 885–892. https://doi.org/10.29109/gujsc.1331788
  • Hargreaves G, Riley J (1985). Irrigation water requirements for Senegal River basin. Journal of Irrigation and Drainage Engineering, 111(3): 265–275.
  • Hooke R, Jeeves TA (1961). "Direct Search" solution of numerical and statistical problems. Journal of the ACM, 8(2): 212–229. https://doi.org/10.1145/321062.321069
  • İzmir Kalkınma Ajansı (2021). İzmir’in güneş enerjisi potansiyeli ve yatırım fırsatları. Kalkınma Sözlüğü. https://kalkinmasozlugu.izka.org.tr/gunes-enerjisi/ (Accessed November 21, 2024).
  • Kirkpatrick S, Gelatt CD, Vecchi MP (1983). Optimization by simulated annealing. Science, 220(4598): 671–680. https://doi.org/10.1126/science.220.4598.671
  • Külcü R (2015). Modelling of solar radiation reaching the earth to Isparta province. Süleyman Demirel University, Journal of the Faculty of Agriculture, 10(1): 19–26.
  • Külcü R (2019). Development of a new model using empirical modeling of global solar radiation and its application in Çankırı city. Süleyman Demirel University, Yekarum e-Dergi, 4(2): 1–8.
  • Külcü R, Ersan R (2021). Empirical modelling of global solar radiation in Hatay (Turkey) province. Tekirdağ Ziraat Fakültesi Dergisi, 18(3): 446–456. https://doi.org/10.33462/jotaf.828187
  • NelderJA, Mead R (1965). A simplex method for function minimization. The Computer Journal, 7(4): 308–313. https://doi.org/10.1093/comjnl/7.4.308
  • Prescott J (1940). Evaporation from a water surface in relation to solar radiation. Transactions of the Royal Society of South Australia, 64(1): 114–118.
  • Süslü A (2024). Determining the most suitable empirical model for global solar radiation prediction in the lakes region. International Journal of Agriculture, Environment and Food Sciences, 8(4): 904-912. https://doi.org/10.31015/jaefs.2024.4.20
  • Süslü A, Külcü R (2024). Global güneş ışınımı tahmin modelleri için ATATEK-Solar yazılımının geliştirilmesi. Akademia Doğa ve İnsan Bilimleri Dergisi, 10(1): 62–73.
  • Türkiye Enerji Bakanlığı. (2024). Güneş enerjisi. T.C. Enerji ve Tabii Kaynaklar Bakanlığı. https://enerji.gov.tr/bilgi-merkezi-enerji-gunes (Accessed November 17, 2024).

Comparative Analysis of Empirical and AI-Supported Models in Global Solar Radiation Prediction for İzmir Province

Yıl 2025, Cilt: 39 Sayı: 1, 108 - 120

Öz

In this study, the performances of different models that can be used to predict global solar radiation for İzmir province were analyzed comparatively. Using ATATEK-Solar software, 14 empirical models commonly used in the literature and a newly developed AI-supported model were tested. Each model was analyzed using three different optimization algorithms (Nelder-Mead Simplex, Pattern Search, Simulated Annealing). Long-term average meteorological data obtained from Turkish State Meteorological Service were used. According to the analysis results, Model 15 performed the most successful predictions with RMSE:0.1451 and R²:0.9995 values. This was followed by Model 5 with RMSE:0.2016 and R²:0.9990 values and Model 6 with RMSE:0.2017 and R²:0.9990 values. When model performances were examined on a monthly basis, it was observed that the lowest prediction errors occurred in spring and summer months. As a result of the study, it is recommended to use Model 15 in evaluating the solar energy potential of İzmir province and system design.

Kaynakça

  • Almorox J, Hontoria C (2004). Global solar radiation estimation using sunshine duration in Spain. Energy Conversion and Management, 45(9–10): 1529–1535. https://doi.org/10.1016/j.enconman.2003.08.022
  • Almorox J, Bocco M, Willington E (2013). Estimation of daily global solar radiation from measured temperatures at Cañada de Luque, Córdoba, Argentina. Renewable Energy, 60: 382–387.
  • Ampratwum DB, Dorvlo ASS (1999). Estimation of solar radiation from the number of sunshine hours. Applied Energy, 63: 161–167.
  • Angstrom A (1924). Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation. Quarterly Journal of the Royal Meteorological Society, 50(210): 121–126.
  • Bristow KL, Campbell G (1984). On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agricultural and Forest Meteorology, 31(2): 159–166.
  • Coppolino S (1994). A new correlation between clearness index and relative sunshine. Renewable Energy, 4(4): 417–423.
  • Dogniaux R, Lemoine M (1983). Classification of radiation sites in terms of different indices of atmospheric transparency. Solar Energy Research and Development in the European Community, Series F, Vol. 2. Dordrecht, Holland: Reidel.
  • Duffie JA, Beckman WA (2006). Solar engineering of thermal processes (3rd ed.). New York: John Wiley & Sons. Elagib N, Mansell M (2000). New approaches for estimating global solar radiation across Sudan. Energy Conversion and Management, 41(5): 419–434.
  • El-Metwally M (2005). Sunshine and global solar radiation estimation at different sites in Egypt. Journal of Atmospheric and Solar-Terrestrial Physics, 67(14): 1331–1342.
  • Ersan R, Külcü R (2024). Development of new models using empirical modeling of global solar radiation and its application in Usak city, Turkey. Tekirdağ Ziraat Fakültesi Dergisi, 21(5): 1235-1251. https://doi.org/10.33462/jotaf.1512442
  • Ertürk S, Kara H, Akkuş C, Genç G (2023). Türkiye’de farklı iklim kuşakları için yapay sinir ağları kullanılarak güneş ışınımının tahmini. Gazi University Journal of Science Part C: Design and Technology, 11(3): 885–892. https://doi.org/10.29109/gujsc.1331788
  • Hargreaves G, Riley J (1985). Irrigation water requirements for Senegal River basin. Journal of Irrigation and Drainage Engineering, 111(3): 265–275.
  • Hooke R, Jeeves TA (1961). "Direct Search" solution of numerical and statistical problems. Journal of the ACM, 8(2): 212–229. https://doi.org/10.1145/321062.321069
  • İzmir Kalkınma Ajansı (2021). İzmir’in güneş enerjisi potansiyeli ve yatırım fırsatları. Kalkınma Sözlüğü. https://kalkinmasozlugu.izka.org.tr/gunes-enerjisi/ (Accessed November 21, 2024).
  • Kirkpatrick S, Gelatt CD, Vecchi MP (1983). Optimization by simulated annealing. Science, 220(4598): 671–680. https://doi.org/10.1126/science.220.4598.671
  • Külcü R (2015). Modelling of solar radiation reaching the earth to Isparta province. Süleyman Demirel University, Journal of the Faculty of Agriculture, 10(1): 19–26.
  • Külcü R (2019). Development of a new model using empirical modeling of global solar radiation and its application in Çankırı city. Süleyman Demirel University, Yekarum e-Dergi, 4(2): 1–8.
  • Külcü R, Ersan R (2021). Empirical modelling of global solar radiation in Hatay (Turkey) province. Tekirdağ Ziraat Fakültesi Dergisi, 18(3): 446–456. https://doi.org/10.33462/jotaf.828187
  • NelderJA, Mead R (1965). A simplex method for function minimization. The Computer Journal, 7(4): 308–313. https://doi.org/10.1093/comjnl/7.4.308
  • Prescott J (1940). Evaporation from a water surface in relation to solar radiation. Transactions of the Royal Society of South Australia, 64(1): 114–118.
  • Süslü A (2024). Determining the most suitable empirical model for global solar radiation prediction in the lakes region. International Journal of Agriculture, Environment and Food Sciences, 8(4): 904-912. https://doi.org/10.31015/jaefs.2024.4.20
  • Süslü A, Külcü R (2024). Global güneş ışınımı tahmin modelleri için ATATEK-Solar yazılımının geliştirilmesi. Akademia Doğa ve İnsan Bilimleri Dergisi, 10(1): 62–73.
  • Türkiye Enerji Bakanlığı. (2024). Güneş enerjisi. T.C. Enerji ve Tabii Kaynaklar Bakanlığı. https://enerji.gov.tr/bilgi-merkezi-enerji-gunes (Accessed November 17, 2024).
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tarımsal Enerji Sistemleri
Bölüm Araştırma Makalesi
Yazarlar

Ahmet Süslü 0000-0003-4016-589X

Erken Görünüm Tarihi 24 Mart 2025
Yayımlanma Tarihi
Gönderilme Tarihi 13 Aralık 2024
Kabul Tarihi 13 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 39 Sayı: 1

Kaynak Göster

EndNote Süslü A (01 Mart 2025) Comparative Analysis of Empirical and AI-Supported Models in Global Solar Radiation Prediction for İzmir Province. Selcuk Journal of Agriculture and Food Sciences 39 1 108–120.

Selcuk Journal of Agriculture and Food Sciences Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı (CC BY NC) ile lisanslanmıştır.