Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 42 Sayı: 2, 529 - 533, 30.04.2024

Öz

Kaynakça

  • REFERENCES
  • [1] Vernam G. S. Cipher printing telegraph systems for secret wire and radio telegraphic communications. Trans J Am Inst Electr Eng 1926;45:295301. [CrossRef]
  • [2] Kuklová Z. Coding theory, cryptography and cryptographic protocols-exercises with solutions. Bachelor Thesis, Masaryk University, Brno, Faculty of Informatics; 2007.
  • [3] Çalkavur S. Güzeltepe M. Secure encryption from cyclic codes. Sigma J Eng Nat Sci 2022;40:380389. [CrossRef]
  • [4] Yildiz B. Karadeniz S. Cyclic codes over . Des Codes Cryptogr 2011;58:221234. [CrossRef]
  • [5] Dertli A. Halkalar Üzerinde Tanımlı Kodlar Hakkında Bazı Araştırmalar [master thesis]. Samsun: Ondokuz Mayıs University; 2016.
  • [6] Ling S. Xing C. Coding Theory: A First Course. Cambridge University Press. 2004. [CrossRef]
  • [7] Hill R. A First Course in Coding Theory. Oxford: Oxford University; 1990.
  • [8] Petrenko V. Ryabtsev S. Pavlov A. Apurin A. Development of an Encryption Method Based on Cyclic Codes, 21st International Workshop on Computer Science and Information Technologies. pp.196-201, Atlantis Press. 2019. [CrossRef]
  • [9] Aguilar-Melchor C. Blazy O. Deneuville J. C. Gaborit P. Zémor G. Efficient encryption from random quasi-cyclic codes. IEEE Trans Inform Theor 2018;64:39273943. [CrossRef]
  • [10] Prange E. The use of information sets in decoding cyclic codes. IRE Trans Inform Theor 1962;8:5–9. [CrossRef]
  • [11] Abualrub T. Seneviratne P. Skew codes over ring. Proceedings of the International MultiConference of Engineers and Computers Sciences 2010 Vol. II, IMECS, , Hong Kong, March 17-19, 2010
  • [12] Srikantaswamy SG, Phaneendra HD. Enhanced onetime pad cipher with morearithmetic and logical operations with flexible key generation algorithm. Int J Netw Secur Appl 2011;6:3. [CrossRef]
  • [13] Hussein MN, Megahed MH, Abdel Azeem MH. Design and simulation of authenticated encryption AENOTP stream cipher algorithm, 13th International Computer Engineering Conference. 2017. p. 393398. [CrossRef]
  • [14] Patil S. Devare M. Kumar A. Modified one time pad data security scheme :Random key generation approach. Int J Comput Sci Secur 2014;3:139145.
  • [15] Ma F. Gao J. Bounds on Covering Radius of Some Codes Over . IEEE 2021;9:4766847676, 2021. [CrossRef]
  • [16] Shannon C. Communication theory of secrecy systems. Bell Syst Tech J 1949;28:656–715. [CrossRef]

Secure encryption over the ring F2 + uF2 + vF2 + uvF2

Yıl 2024, Cilt: 42 Sayı: 2, 529 - 533, 30.04.2024

Öz

Cryptology is a part of mathematics as encryption and decryption. The purpose of encryption is to make information incomprehensible when it is in the hands of unauthorized people. The receiver can decrypt the message that encrypted by the sender with helping of the key. The important point is that the key cannot be decrypted by other people. One Time Pad method solves this problem. The key is used only once each encryption in this method. So, the key becomes harder to guess. If the key is solved by unauthorized people, the message cannot be solved. Because of with each decryption, many meaningful messages are obtained. Every cyclic shift in a cyclic code constructs a new key and in each encryption is used the new key. Many keys are generated thanks to cyclic codes. In this paper, we improve the new encryption scheme by using the cyclic codes with One Time Pad method.

Kaynakça

  • REFERENCES
  • [1] Vernam G. S. Cipher printing telegraph systems for secret wire and radio telegraphic communications. Trans J Am Inst Electr Eng 1926;45:295301. [CrossRef]
  • [2] Kuklová Z. Coding theory, cryptography and cryptographic protocols-exercises with solutions. Bachelor Thesis, Masaryk University, Brno, Faculty of Informatics; 2007.
  • [3] Çalkavur S. Güzeltepe M. Secure encryption from cyclic codes. Sigma J Eng Nat Sci 2022;40:380389. [CrossRef]
  • [4] Yildiz B. Karadeniz S. Cyclic codes over . Des Codes Cryptogr 2011;58:221234. [CrossRef]
  • [5] Dertli A. Halkalar Üzerinde Tanımlı Kodlar Hakkında Bazı Araştırmalar [master thesis]. Samsun: Ondokuz Mayıs University; 2016.
  • [6] Ling S. Xing C. Coding Theory: A First Course. Cambridge University Press. 2004. [CrossRef]
  • [7] Hill R. A First Course in Coding Theory. Oxford: Oxford University; 1990.
  • [8] Petrenko V. Ryabtsev S. Pavlov A. Apurin A. Development of an Encryption Method Based on Cyclic Codes, 21st International Workshop on Computer Science and Information Technologies. pp.196-201, Atlantis Press. 2019. [CrossRef]
  • [9] Aguilar-Melchor C. Blazy O. Deneuville J. C. Gaborit P. Zémor G. Efficient encryption from random quasi-cyclic codes. IEEE Trans Inform Theor 2018;64:39273943. [CrossRef]
  • [10] Prange E. The use of information sets in decoding cyclic codes. IRE Trans Inform Theor 1962;8:5–9. [CrossRef]
  • [11] Abualrub T. Seneviratne P. Skew codes over ring. Proceedings of the International MultiConference of Engineers and Computers Sciences 2010 Vol. II, IMECS, , Hong Kong, March 17-19, 2010
  • [12] Srikantaswamy SG, Phaneendra HD. Enhanced onetime pad cipher with morearithmetic and logical operations with flexible key generation algorithm. Int J Netw Secur Appl 2011;6:3. [CrossRef]
  • [13] Hussein MN, Megahed MH, Abdel Azeem MH. Design and simulation of authenticated encryption AENOTP stream cipher algorithm, 13th International Computer Engineering Conference. 2017. p. 393398. [CrossRef]
  • [14] Patil S. Devare M. Kumar A. Modified one time pad data security scheme :Random key generation approach. Int J Comput Sci Secur 2014;3:139145.
  • [15] Ma F. Gao J. Bounds on Covering Radius of Some Codes Over . IEEE 2021;9:4766847676, 2021. [CrossRef]
  • [16] Shannon C. Communication theory of secrecy systems. Bell Syst Tech J 1949;28:656–715. [CrossRef]
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klinik Kimya
Bölüm Research Articles
Yazarlar

Neriman Şolt 0000-0002-0612-6777

Selda Çalkavur 0000-0002-1502-123X

Murat Güzeltepe 0000-0002-2089-5660

Yayımlanma Tarihi 30 Nisan 2024
Gönderilme Tarihi 1 Haziran 2022
Yayımlandığı Sayı Yıl 2024 Cilt: 42 Sayı: 2

Kaynak Göster

Vancouver Şolt N, Çalkavur S, Güzeltepe M. Secure encryption over the ring F2 + uF2 + vF2 + uvF2. SIGMA. 2024;42(2):529-33.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/