Araştırma Makalesi
BibTex RIS Kaynak Göster

New moving frames for the curves lying on a surface

Yıl 2024, Cilt: 42 Sayı: 4, 1023 - 1029, 01.08.2024

Öz

In this article, three new orthogonal frames are defined for the curves lying on a surface. These moving frames, obtained based on the Darboux frame, are called “Osculator Darboux Frame”, “Normal Darboux Frame” and “Rectifying Darboux Frame”, respectively. Also, the Osculator Darboux Frame components and curvatures are calculated for a presented example.

Kaynakça

  • REFERENCES
  • [1] Liu H, Wang F. Mannheim partner curves in 3-space. J Geom 2008;88:120126.
  • [2] J Burke. Bertrand curves associated with a pair of curves. Math Mag 1960;34:60–62.
  • [3] Gluck H. Higher curvatures of curves in euclidean space. Am Math Mon 1966;73:699704.
  • [4] Sabuncuoğlu A, Hacısalihoğlu HH. On higher curvatures of a curve. Commun Fac Sci Univ Ankara Ser A1 Math Stat 1975;24:3346.
  • [5] Özdamar E, Hacısalihoğlu HH. A Characterization of Inclined Curves in Euclidean n-Space, Communications, Commun Fac Sci Univ Ankara Ser A1 Math 1975;24:1523.
  • [6] Özdamar E, Hacısalihoğlu HH. Characterizations of spherical curves in euclidean n-space. Commun Fac Sci Univ Ankara Ser A1 Math Stat 1974:109125.
  • [7] Izumiya S, Takeuchi N. New special curves and developable surfaces. Turk J Math 2004;28:153163.
  • [8] Kula L, Ekmekçi N, Yaylı Y, İlarslan K. Characterizations of slant helices in euclidean 3-space. Turk J Math 2010;34:261273.
  • [9] Öztürk U, Hacısalihoğlu HH. Helices on a surface in Euclidean 3-space.Celal Bayar Univ J Sci 2017;13:113123.
  • [10] Zıplar E, Şenol A, Yaylı Y. On darboux helices in euclidean 3-space. Glob J Science Front Res Math Decis Sci 2012;12:7380.
  • [11] Uzunoğlu B, Gök ·I, Yayli Y. A new approach on curves of constant precession. Appl Math Comput 2016;275:317323.
  • [12] Yılmaz S, Turgut M. 2010. A New version of bishop frame and application to spherical images. J Mathe Anal Appl 2010;371:764776.
  • [13] Bishop LR. There is more than one way to frame a curve. Am Math Mon 1975;82:246251.
  • [14] Düldül M, Uyar Düldül B. Characterizations of helices by using their Darboux vectors. Sigma J Eng Nat Sci 2020;38:12991306.
  • [15] Hananoi S, Ito N, Izumiya S. Spherical Darboux images of curves on surfaces. Beitr Algebra Geom 2015;56:575585.
  • [16] Macit N, Düldül M. Relatively normal-slant helices lying on a surface and their characterizations. Hacettepe J Math Stat 2017;46:397408.
  • [17] Doğan F, Yaylı Y. On isophote curves and their characterizations. Turk J Math 2015;39:650664.
  • [18] Önder M. Helices associated to helical curves, relatively normal-slant helices and isophote curves. Available at: https://arxiv.org/abs/2201.09684. Accessed on Jul 2, 2024.
  • [19] O'Neill B. Elementary differential geometry. Cambridge: Academic Press; 1966.
Yıl 2024, Cilt: 42 Sayı: 4, 1023 - 1029, 01.08.2024

Öz

Kaynakça

  • REFERENCES
  • [1] Liu H, Wang F. Mannheim partner curves in 3-space. J Geom 2008;88:120126.
  • [2] J Burke. Bertrand curves associated with a pair of curves. Math Mag 1960;34:60–62.
  • [3] Gluck H. Higher curvatures of curves in euclidean space. Am Math Mon 1966;73:699704.
  • [4] Sabuncuoğlu A, Hacısalihoğlu HH. On higher curvatures of a curve. Commun Fac Sci Univ Ankara Ser A1 Math Stat 1975;24:3346.
  • [5] Özdamar E, Hacısalihoğlu HH. A Characterization of Inclined Curves in Euclidean n-Space, Communications, Commun Fac Sci Univ Ankara Ser A1 Math 1975;24:1523.
  • [6] Özdamar E, Hacısalihoğlu HH. Characterizations of spherical curves in euclidean n-space. Commun Fac Sci Univ Ankara Ser A1 Math Stat 1974:109125.
  • [7] Izumiya S, Takeuchi N. New special curves and developable surfaces. Turk J Math 2004;28:153163.
  • [8] Kula L, Ekmekçi N, Yaylı Y, İlarslan K. Characterizations of slant helices in euclidean 3-space. Turk J Math 2010;34:261273.
  • [9] Öztürk U, Hacısalihoğlu HH. Helices on a surface in Euclidean 3-space.Celal Bayar Univ J Sci 2017;13:113123.
  • [10] Zıplar E, Şenol A, Yaylı Y. On darboux helices in euclidean 3-space. Glob J Science Front Res Math Decis Sci 2012;12:7380.
  • [11] Uzunoğlu B, Gök ·I, Yayli Y. A new approach on curves of constant precession. Appl Math Comput 2016;275:317323.
  • [12] Yılmaz S, Turgut M. 2010. A New version of bishop frame and application to spherical images. J Mathe Anal Appl 2010;371:764776.
  • [13] Bishop LR. There is more than one way to frame a curve. Am Math Mon 1975;82:246251.
  • [14] Düldül M, Uyar Düldül B. Characterizations of helices by using their Darboux vectors. Sigma J Eng Nat Sci 2020;38:12991306.
  • [15] Hananoi S, Ito N, Izumiya S. Spherical Darboux images of curves on surfaces. Beitr Algebra Geom 2015;56:575585.
  • [16] Macit N, Düldül M. Relatively normal-slant helices lying on a surface and their characterizations. Hacettepe J Math Stat 2017;46:397408.
  • [17] Doğan F, Yaylı Y. On isophote curves and their characterizations. Turk J Math 2015;39:650664.
  • [18] Önder M. Helices associated to helical curves, relatively normal-slant helices and isophote curves. Available at: https://arxiv.org/abs/2201.09684. Accessed on Jul 2, 2024.
  • [19] O'Neill B. Elementary differential geometry. Cambridge: Academic Press; 1966.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klinik Kimya
Bölüm Research Articles
Yazarlar

Akın Alkan 0000-0002-8179-9525

Hüseyin Kocayiğit Bu kişi benim 0000-0001-6503-8243

Tuba Ağırman Aydın 0000-0001-8034-0723

Yayımlanma Tarihi 1 Ağustos 2024
Gönderilme Tarihi 11 Ocak 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 42 Sayı: 4

Kaynak Göster

Vancouver Alkan A, Kocayiğit H, Ağırman Aydın T. New moving frames for the curves lying on a surface. SIGMA. 2024;42(4):1023-9.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/