Araştırma Makalesi
BibTex RIS Kaynak Göster

Schrödinger Denkleminin Sonlu Fark Yöntemi Çözümünde Chebyshev Noktaları Kullanımı

Yıl 2018, Cilt: 3 Sayı: 1, 53 - 62, 25.05.2018

Öz

Günümüzde Schrödinger denkleminin hassas ve aynı zamanda hızlı çözümü oldukça önem arz etmektedir. Bu çalışmada Schrödinger denkleminin sonlu fark yöntemi ve Chebyshev noktaları kullanılarak daha hassas ve dolayısıyla hızlı çözümü önerilmektedir. Sınırlandırılmış nano boyutlardaki çözüm bölgesi Chebyshev noktaları ile tanımlanmış ve elde edilen Hermitian olmayan asimetrik Hamiltonian benzerlik transformasyonu ile simetrik Hermitian Hamiltonian’a çevrilmiştir. Bu yöntemle elde edilen Hamiltonian’ın homojen aralıklı noktalar ile çözülmüş problemlere göre daha düşük nokta sayısı ile ve metodolojik değişime gerek duymadan doğru sonuca yakınsadığı gösterilmiştir.

Kaynakça

  • L. Vitos, 2007. Computational quantum mechanics for materials engineers: the EMTO method and applications, Springer.
  • Datta, Supriyo, 2012. Lessons From Nanoelectronics: A New Perspective On Transport, World Scientific.
  • Randall J. LeVeque, 2007. Finite difference methods for ordinary and partial differential equations : steady-state and time-dependent problems, SIAM, Philadelphia, PA.
  • L.N. Trefethen, 2000. Spectral Methods in MATLAB, SIAM, Philadelphia, PA.
  • Runge, Carl, (1901) Uber empirische Funktionen und die Interpolation zwischen aquidistanten Ordinaten.} Zeitschrift für Mathematik und Physik., 46: 224-243.
  • Q. Liu, C. Cheng, H. Z. Massoud, 2004. The Spectral Grid Method: A Novel Fast Schrödinger-Equation Solver for Semiconductor Nanodevice Simulation. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS., v. 23, n.8, p. 1200-1208.
  • J. Lee, Q. H. Liu, 2005. An Efficient 3-D Spectral-Element Method for Schrödinger Equation in Nanodevice Simulation. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS., v. 24, n.12, p. 1848-1858.
  • W. Lin, N. Kovvali, L. Carin, 2006. Pseudospectral method based on prolate spheroidal wave functions for semiconductor nanodevice simulation. Computer Physics Communications., v. 175, p. 78-85.
  • C. Huang, 2009. Semiconductor nanodevice simulation by multidomain spectral method with Chebyshev, prolate spheroidal and Laguerre basis functions. Computer Physics Communications., v. 180, p. 375-383.
  • Q. Liu, C. Cheng, H. Z. Massoud, 2008. 3-D self-consistent Schr\"odinger-Poisson solver: the spectral element method. J. Comput. Electron., 7: 337-341.
  • G. Dattoli, C. Centioli, A. Torre, 1988. The Similarity Transformation Method and Diagonalization of Two-Photon Hamiltonians. Il Nuovo Cimento B, v. 101, i. 5, p. 557–567.
  • L. Meissnera, M. Nooijen, 1995. Effective and intermediate Hamiltonians obtained by similarity transformations. J. Chem. Phys., Vol. 102, No. 24.
  • Jacob M. Wahlen-Strothman, Carlos A. Jiménez-Hoyos, Thomas M. Henderson, and Gustavo E. Scuseria, 2015. Lie algebraic similarity transformed Hamiltonians for lattice model systems. PHYSICAL REVIEW B 91, 041114(R)
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makaleleri
Yazarlar

Aytaç Çelik

Yayımlanma Tarihi 25 Mayıs 2018
Gönderilme Tarihi 16 Mayıs 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 3 Sayı: 1

Kaynak Göster

APA Çelik, A. (2018). Schrödinger Denkleminin Sonlu Fark Yöntemi Çözümünde Chebyshev Noktaları Kullanımı. Sinop Üniversitesi Fen Bilimleri Dergisi, 3(1), 53-62.


Sinopfbd' de yayınlanan makaleler CC BY-NC 4.0 ile lisanslanmıştır.