Araştırma Makalesi
BibTex RIS Kaynak Göster

C95200 ve C95300 Al Bronz Alaşımlarının Sertlik, Çekme ve Çentik Darbe Özelliklerinin Karşılaştırılması

Yıl 2023, Cilt: 8 Sayı: 2, 216 - 228, 28.12.2023
https://doi.org/10.33484/sinopfbd.1385149

Öz

Bu çalışmanın amacı, yüksek mukavemet, korozyon, aşınma ve yorulma özelliklerini bir araya getiren C95300 ve C95200 alaşımlarının mikroyapı ve mekanik özelliklerini incelemektir. Alüminyum (Al) bronzlarının element miktarları hesaplanıp hazırlandıktan sonra, indüksiyon fırınında eritilmişlerdir. Al bronz standartlarına göre hazırlanan alaşımlar 1150°C'de bir süre bekletildikten sonra 250°C'ye ısıtılmış kalıcı bir kalıba dökülmüştür. Üretilen Al bronz külçelerden numuneler alınmıştır. Optik mikroskop ve SEM (Scanning Electron Microscope) görüntüleme, EDX (Energy Dispersion X-Ray Spectrometer), sertlik, çekme ve darbe testleri de gerçekleştirilmiştir. İncelemeler sonucunda, C95300 alaşımlarında ikincil faz oluşumu gözlenmiş, sertlik ve çekme mukavemeti artmıştır. Çentik darbe testi sonucunda C95300 alaşımı, C95200 alaşımına kıyasla hem darbe enerjisi hem de tokluk için daha düşük değerlere sahiptir.

Destekleyen Kurum

Karabük Üniversitesi

Proje Numarası

KBÜBAP-21-YL-083

Teşekkür

Bu çalışma Proje No: KBÜBAP-21-YL-083 numaralı proje ile Karabük Üniversitesi BAP Koordinasyon Birimi tarafından desteklenmiştir.

Kaynakça

  • Liang, W., Xiaolei, X., Jiujun, X., & Zukun, H. (2000). Microstructures and properties of PVD aluminum bronze coatings. Thin Solid Films, 376(1-2) 159-163. https://doi.org/10.1016/S0040-6090(00)01213-X
  • Metin, M. (2022) Alüminyum bronzlarının mekanik, yorulma, mikroyapı ve korozyon özelliklerinin incelenmesi. (Tez no. 755666) [Yüksek Lisans Tezi, Karabük Üniversitesi].
  • Kaplan, M., & Yildiz, A. K. (2003). The effects of production methods on the microstructures and mechanical properties of an aluminum bronze. Materials Letters, 57(28), 4402-4411. https://doi.org/10.1016/S0167-577X(03)00332-X
  • Yasar, M., Demiral, M., Özyurek, D., & Ünal, M. (2009). Investigation of wear behaviors of C95200-C95300 Cu-Al-Fe alloys. Industrial Lubrication and Tribology, 61(1) 40-46. https://doi.org/10.1108/00368790910929520
  • Yaşar, M. & Altunpak, Y. (2009). The effect of aging heat treatment on the sliding wear behaviour of Cu–Al–Fe alloys. Materials & Design, 30(3) 878–884. https://doi.org/10.1016/j.matdes.2008.05.041
  • Li, W. S., Wang, Z. P., Lu, Y., Jin, Y. H., Yuan, L. H., & Wang, F. (2006). Mechanical and tribological properties of a novel aluminum bronze material for drawing dies. Wear, 261(2), 155-163. https://doi.org/10.1016/j.wear.2005.09.032
  • Baumeister, G., Okolo, B., & Rögner, J. (2008). Microcasting of Al bronze: influence of casting parameters on the microstructure and the mechanical properties. Microsystem Technologies, 14(9-11), 1647-1655. https://doi.org/10.1007/s00542-008-0605-4
  • Brezina, P. (1982). Heat treatment of complex aluminium bronzes. International Metals Reviews, 27(1), 77-120. https://doi.org/10.1179/imr.1982.27.1.77
  • Ünal, M. (1999). Alüminyum bronzunda farklı katılaşma hızlarının mikroyapı ve mekanik özelliklerine etkisi. (Tez no. 85910) [Yüksek Lisans Tezi, Gazi Üniversitesi].
  • Metin, M., Ünal, M., Gören, H. A. (2022). %3,5 NaCl ortamında C95200 ve C95300 alüminyum bronzlarının korozyon davranışları. Bilecik Şeyh Edebali Üniversitesi Fen Bilim. Dergisi, 9(2), 939-966. https://doi.org/10.35193/bseufbd.1134737
  • Doğan, Z. E., Kahrıman, F., & Atapek, Ş. H. (2018). Microstructural and thermal characterization of aluminum bronzes. Kocaeli Journal of Science and Engineering, 1(1), 6-10. https://doi.org/10.34088/kojose.405810
  • Sadykov, F. A., Barykin, N. P., & Aslanyan, I. R. (1999). Wear of copper and its alloys with submicrocrystalline structure. Wear, 225-229(1), 649-655. https://doi.org/10.1016/S0043-1648(98)00374-3
  • Donatus, U., Omotoyinbo, J. A., & Momoh, I. M. (2012). Mechanical properties and microstructures of locally produced aluminium-bronze alloy. Journal of Minerals and Materials Characterization and Engineering, 11(10), 1020-1026. doi: 10.4236/jmmce.2012.1110105
  • Gohar, G. A., Manzoor, T., & Shah, A. N. (2018). Investigation of thermal and mechanical properties of Cu-Al alloys with silver addition prepared by powder metallurgy. Journal of Alloys and Compounds, 735, 802-812. https://doi.org/10.1016/j.jallcom.2017.11.176
  • Wang, Y., Konovalov, S., Chen, X., Ivanov, Y., Singh, R. A., Jayalakshmi, S., Pan, X. (2021). Microstructure and mechanical properties of cu–al alloy deposited by additive manufacturing. Materials Highlights, 2(3), 46. https://doi.org/10.2991/mathi.k.210318.001
  • Cenoz, I. (2011). Effect of different cooling rates on the microstructure of Cu–Al–Fe alloy. Canadian Metallurgical Quarterly, 50(1), 80-84. https://doi.org/10.1179/000844311X552340
  • Duncheva, G. V., Maximov, J. T., Anchev, A. P., Dunchev, V. P., Argirov, Y. B., & Kandeva-Ivanova M. (2022). Enhancement of the wear resistance of CuAl9Fe4 sliding bearing bushings via diamond burnishing. Wear, 510-511, 204491. https://doi.org/10.1016/j.wear.2022.204491
  • Duncheva, G. V., Maximov, J. T., Anchev, A. P., Dunchev, V. P., & Argirov, Y. B. (2022). Improvement in wear resistance performance of cual8fe3 single-phase aluminum bronze via slide diamond burnishing. Journal of Materials Engineering and Performance, 31(3), 2466-2478. https://doi.org/10.1007/s11665-021-06389-6
  • Tavares, S. S. M., Mota, N. M., Igreja, H. R da., Barbosa, C., & Pardal, J. M. (2021). Microstructure, mechanical properties, and brittle fracture of a cast nickel-aluminum-bronze (NAB) UNS C95800. Engineering Failure Analysis, 128, 105606, https://doi.org/10.1016/j.engfailanal.2021.105606

Comparison of the Hardness, Tensile and Notch Impact Properties of C95200 and C95300 Al Bronze Alloys

Yıl 2023, Cilt: 8 Sayı: 2, 216 - 228, 28.12.2023
https://doi.org/10.33484/sinopfbd.1385149

Öz

The aim of this study is to investigate the microstructure and mechanical properties of C95300 and C95200 alloys, which combine high strength, corrosion, wear and fatigue properties. After calculating and preparing the elemental amounts of the aluminium (Al) bronzes, they were melted in an induction furnace. The alloys, prepared to Al bronze standards, were held at 1150°C for some time and then cast in a permanent mould heated to 250°C. Samples were taken from the Al bronze ingots produced. Optical microscope and SEM (Scanning Electron Microscope) imaging, EDX (Energy Dispersion X-Ray Spectrometer), hardness, tensile and impact tests were also carried out. As a result of the investigations, secondary phase formation was observed in the C95300 alloys, increasing hardness and tensile strength. As a result of the notch impact test, the C95300 alloy has lower values for both impact energy and toughness compared to the C95200 alloy.

Destekleyen Kurum

Karabük University

Proje Numarası

KBÜBAP-21-YL-083

Teşekkür

This study was supported by Karabük University BAP Coordination Unit with Project No: KBÜBAP-21-YL-083.

Kaynakça

  • Liang, W., Xiaolei, X., Jiujun, X., & Zukun, H. (2000). Microstructures and properties of PVD aluminum bronze coatings. Thin Solid Films, 376(1-2) 159-163. https://doi.org/10.1016/S0040-6090(00)01213-X
  • Metin, M. (2022) Alüminyum bronzlarının mekanik, yorulma, mikroyapı ve korozyon özelliklerinin incelenmesi. (Tez no. 755666) [Yüksek Lisans Tezi, Karabük Üniversitesi].
  • Kaplan, M., & Yildiz, A. K. (2003). The effects of production methods on the microstructures and mechanical properties of an aluminum bronze. Materials Letters, 57(28), 4402-4411. https://doi.org/10.1016/S0167-577X(03)00332-X
  • Yasar, M., Demiral, M., Özyurek, D., & Ünal, M. (2009). Investigation of wear behaviors of C95200-C95300 Cu-Al-Fe alloys. Industrial Lubrication and Tribology, 61(1) 40-46. https://doi.org/10.1108/00368790910929520
  • Yaşar, M. & Altunpak, Y. (2009). The effect of aging heat treatment on the sliding wear behaviour of Cu–Al–Fe alloys. Materials & Design, 30(3) 878–884. https://doi.org/10.1016/j.matdes.2008.05.041
  • Li, W. S., Wang, Z. P., Lu, Y., Jin, Y. H., Yuan, L. H., & Wang, F. (2006). Mechanical and tribological properties of a novel aluminum bronze material for drawing dies. Wear, 261(2), 155-163. https://doi.org/10.1016/j.wear.2005.09.032
  • Baumeister, G., Okolo, B., & Rögner, J. (2008). Microcasting of Al bronze: influence of casting parameters on the microstructure and the mechanical properties. Microsystem Technologies, 14(9-11), 1647-1655. https://doi.org/10.1007/s00542-008-0605-4
  • Brezina, P. (1982). Heat treatment of complex aluminium bronzes. International Metals Reviews, 27(1), 77-120. https://doi.org/10.1179/imr.1982.27.1.77
  • Ünal, M. (1999). Alüminyum bronzunda farklı katılaşma hızlarının mikroyapı ve mekanik özelliklerine etkisi. (Tez no. 85910) [Yüksek Lisans Tezi, Gazi Üniversitesi].
  • Metin, M., Ünal, M., Gören, H. A. (2022). %3,5 NaCl ortamında C95200 ve C95300 alüminyum bronzlarının korozyon davranışları. Bilecik Şeyh Edebali Üniversitesi Fen Bilim. Dergisi, 9(2), 939-966. https://doi.org/10.35193/bseufbd.1134737
  • Doğan, Z. E., Kahrıman, F., & Atapek, Ş. H. (2018). Microstructural and thermal characterization of aluminum bronzes. Kocaeli Journal of Science and Engineering, 1(1), 6-10. https://doi.org/10.34088/kojose.405810
  • Sadykov, F. A., Barykin, N. P., & Aslanyan, I. R. (1999). Wear of copper and its alloys with submicrocrystalline structure. Wear, 225-229(1), 649-655. https://doi.org/10.1016/S0043-1648(98)00374-3
  • Donatus, U., Omotoyinbo, J. A., & Momoh, I. M. (2012). Mechanical properties and microstructures of locally produced aluminium-bronze alloy. Journal of Minerals and Materials Characterization and Engineering, 11(10), 1020-1026. doi: 10.4236/jmmce.2012.1110105
  • Gohar, G. A., Manzoor, T., & Shah, A. N. (2018). Investigation of thermal and mechanical properties of Cu-Al alloys with silver addition prepared by powder metallurgy. Journal of Alloys and Compounds, 735, 802-812. https://doi.org/10.1016/j.jallcom.2017.11.176
  • Wang, Y., Konovalov, S., Chen, X., Ivanov, Y., Singh, R. A., Jayalakshmi, S., Pan, X. (2021). Microstructure and mechanical properties of cu–al alloy deposited by additive manufacturing. Materials Highlights, 2(3), 46. https://doi.org/10.2991/mathi.k.210318.001
  • Cenoz, I. (2011). Effect of different cooling rates on the microstructure of Cu–Al–Fe alloy. Canadian Metallurgical Quarterly, 50(1), 80-84. https://doi.org/10.1179/000844311X552340
  • Duncheva, G. V., Maximov, J. T., Anchev, A. P., Dunchev, V. P., Argirov, Y. B., & Kandeva-Ivanova M. (2022). Enhancement of the wear resistance of CuAl9Fe4 sliding bearing bushings via diamond burnishing. Wear, 510-511, 204491. https://doi.org/10.1016/j.wear.2022.204491
  • Duncheva, G. V., Maximov, J. T., Anchev, A. P., Dunchev, V. P., & Argirov, Y. B. (2022). Improvement in wear resistance performance of cual8fe3 single-phase aluminum bronze via slide diamond burnishing. Journal of Materials Engineering and Performance, 31(3), 2466-2478. https://doi.org/10.1007/s11665-021-06389-6
  • Tavares, S. S. M., Mota, N. M., Igreja, H. R da., Barbosa, C., & Pardal, J. M. (2021). Microstructure, mechanical properties, and brittle fracture of a cast nickel-aluminum-bronze (NAB) UNS C95800. Engineering Failure Analysis, 128, 105606, https://doi.org/10.1016/j.engfailanal.2021.105606
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Meriç Metin 0000-0001-9200-2633

Mehmet Ünal 0000-0003-3836-4566

Halil Ahmet Gören 0000-0003-4455-4024

Proje Numarası KBÜBAP-21-YL-083
Yayımlanma Tarihi 28 Aralık 2023
Gönderilme Tarihi 3 Kasım 2023
Kabul Tarihi 6 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 8 Sayı: 2

Kaynak Göster

APA Metin, M., Ünal, M., & Gören, H. A. (2023). C95200 ve C95300 Al Bronz Alaşımlarının Sertlik, Çekme ve Çentik Darbe Özelliklerinin Karşılaştırılması. Sinop Üniversitesi Fen Bilimleri Dergisi, 8(2), 216-228. https://doi.org/10.33484/sinopfbd.1385149

Cited By

Effect of applied load on adhesive wear and corrosive wear behaviours of two aluminium bronze (Cu-Al-Fe) alloys
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
https://doi.org/10.1177/09544062241283619