Periferik Sinir Rejenerasyonu ve Kök Hücre Tedavileri
Yıl 2018,
Cilt: 8 Sayı: 2, 182 - 192, 29.06.2018
Aydın Him
,
Mehmet Emin Onger
,
Burcu Delibas
Öz
Bu derlemede yazarlar kök hücre/progenitör hücre transplantasyonunun sinir hasarlarının iyileştirilmesinde kullanımı ile ilgili yakın zamandaki gelişmeler ve bu alandaki başlıca çalışmalar hakkında bilgi vermeyi amaçlamaktadır. Periferik sinirlerin akson rejenerasyonu ve hedef dokularını tekrar innerve etme potansiyeline sahip olmalarına rağmen ağır sinir hasarı durumlarında düzelme sınırlı kalmaktadır. Denervasyona uğramış periferik sinirin Schwann hücrelerinin rejenerasyonda yeteri kadar rol alamayışlarından dolayı denerve olmuş distal sinir dokusu ortamının dış kaynaklı doku hücreleriyle desteklenmesi yaklaşımı gerçekçi görülmüştür. Çeşitli kök hücrelerinin periferik sinir rejenerasyonundaki etkileri çalışılmıştır. Deri, kemik iliği ve yağ doku kökenli kök hücreleri Schwann hücrelerine dönüşme kapasiteleriyle en ümit verici adaylar olarak belirlenmiştir. Pluripotent indüklenmiş kök hücre denemelerine ek olarak, yakın zamanlarda yapılan çalışmalar kök hücrelerinde büyüme faktörlerinin ifadesinin uyarılması da rejenerasyonda önemli potansiyele sahiptir. Kök hücrelerinin etkili kullanılabilecek kaynak olmaları ve sinir rejenerasyonunda ümit verici faktörler olduklarının düşünülmesine rağmen bu hücre tedavi potansiyellerinin klinikte kullanılması için gerekli ideal yöntemler henüz oluşturulamamıştır.
Kaynakça
- 1. Letourneau PC. Immunocytochemical evidence for colocalization in neurite growth cones of actin and myosin and their relationship to cell--substratum adhesions. Dev Biol. 1981;85(1):113-122.
- 2. Napoli I, Noon LA, Ribeiro S, Kerai AP, Parrinello S, Rosenberg LH, et al. A central role for the ERK-signaling pathway in controlling Schwann cell plasticity and peripheral nerve regeneration in vivo. Neuron. 2012;73(4):729-742.
- 3. Marconi S, Castiglione G, Turano E, Bissolotti G, Angiari S, Farinazzo A, et al. Human adipose-derived mesenchymal stem cells systemically injected promote peripheral nerve regeneration in the mouse model of sciatic crush. Tissue Eng Part A. 2012;18(11-12):1264-1272.
- 4. Forman DS, Berenberg RA. Regeneration of motor axons in the rat sciatic nerve studied by labeling with axonally transported radioactive proteins. Brain Res. 1978;156(2):213-225.
- 5. Daly W, Yao L, Zeugolis D, Windebank A, Pandit A. A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. J R Soc Interface. 2012;9(67):202-221.
- 6. Webber CA, Christie KJ, Cheng C, Martinez JA, Singh B, Singh V, et al. Schwann cells direct peripheral nerve regeneration through the Netrin-1 receptors, DCC and Unc5H2. Glia. 2011;59(10):1503-1517.
- 7. Satinsky D, Pepe FA, Liu CN. The Neurilemma Cell in Peripheral Nerve Degeneration and Regeneration. Exp Neurol. 1964;9:441-451.
- 8. Ladak A, Olson J, Tredget EE, Gordon T. Differentiation of mesenchymal stem cells to support peripheral nerve regeneration in a rat model. Exp Neurol. 2011;228(2):242-252.
- 9. Cragg BG, Thomas PK. The Conduction Velocity of Regenerated Peripheral Nerve Fibres. J Physiol. 1964;171:164-175.
- 10. Shen Y, Mani S, Donovan SL, Schwob JE, Meiri KF. Growth-associated protein-43 is required for commissural axon guidance in the developing vertebrate nervous system. J Neurosci. 2002;22(1):239-247.
- 11. Fawcett JW, Keynes RJ. Peripheral nerve regeneration. Annu Rev Neurosci. 1990;13:43-60.
- 12. Sun WJ, Sun CK, Zhao H, Lin H, Han Q, Wang J, et al. Improvement of Sciatic Nerve Regeneration Using Laminin-Binding Human NGF-beta. Plos One. 2009;4(7): e6180.
- 13. Davis GE, Manthorpe M, Williams LR, Varon S. Characterization of a Laminin-Containing Neurite-Promoting Factor and a Neuronotrophic Factor from Peripheral-Nerve and Related Sources. Ann Ny Acad Sci. 1986;486:194-205.
- 14. Madison R, Dasilva CF, Dikkes P, Chiu TH, Sidman RL. Increased Rate of Peripheral-Nerve Regeneration Using Bioresorbable Nerve Guides and a Laminin-Containing Gel. Experimental Neurology. 1985;88(3):767-772.
- 15. Nie X, Zhang YJ, Tian WD, Jiang M, Dong R, Chen JW, et al. Improvement of peripheral nerve regeneration by a tissue-engineered nerve filled with ectomesenchymal stem cells. Int J Oral Max Surg. 2007;36(1):32-38.
- 16. Widerberg A, Kanje M, Dahlin LB. Tourniquet compression: a non-invasive method to enhance nerve regeneration in nerve grafts. Neuroreport. 2002;13(4):371-375.
- 17. Ogata T, Iijima S, Hoshikawa S, Miura T, Yamamoto S, Oda H, et al. Opposing extracellular signal-regulated kinase and Akt pathways control Schwann cell myelination. J Neurosci. 2004;24(30):6724-6732.
- 18. Atanasoski S, Notterpek L, Lee HY, Castagner F, Young P, Ehrengruber MU, et al. The protooncogene Ski Schwann cell proliferation controls and myelination. Neuron. 2004;43(4):499-511.
- 19. Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M, et al. Methylprednisolone or tirilazad mesylate administration after acute spinal cord injury: 1-year follow up. Results of the third National Acute Spinal Cord Injury randomized controlled trial. J Neurosurg. 1998;89(5):699-706.
- 20. Chen C, Hill LD, Schubert CM, Strauss JF, Matthews CA. Is laminin gamma-1 a candidate gene for advanced pelvic organ prolapse? Am J Obstet Gynecol. 2010;202(5): 505.e1-5.
- 21. Masaki T, Matsumura K, Saito F, Sunada Y, Shimizu T, Yorifuji H, et al. Expression of dystroglycan and laminin-2 in peripheral nerve under axonal degeneration and regeneration. Acta Neuropathol. 2000;99(3):289-295.
- 22. Saito F, Moore SA, Barresi R, Henry MD, Messing A, Ross-Barta SE, et al. Unique role of dystroglycan in peripheral nerve myelination, nodal structure, and sodium channel stabilization. Neuron. 2003;38(5):747-758.
- 23. Williams AC, Brophy PJ. The function of the Periaxin gene during nerve repair in a model of CMT4F. J Anat. 2002;200(4):323-330.
- 24. Akassoglou K, Yu WM, Akpinar P, Strickland S. Fibrin inhibits peripheral nerve remyelination by regulating Schwann cell differentiation. Neuron. 2002;33(6):861-875.
- 25. Melcangi RC, Cavarretta IT, Ballabio M, Leonelli E, Schenone A, Azcoitia I, et al. Peripheral nerves: a target for the action of neuroactive steroids. Brain Res Brain Res Rev. 2005;48(2):328-338.
- 26. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105-111.
- 27. Thomson JA. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5395):1827-1827.
- 28. Jiang YH, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418:41-49.
- 29. Pomp O, Brokhman I, Ziegler L, Almog M, Korngreen A, Tavian M, et al. PA6-induced human embryonic stem cell-derived neurospheres: a new source of human peripheral sensory neurons and neural crest cells. Brain Res. 2008;1230:50-60.
- 30. Ziegler L, Grigoryan S, Yang IH, Thakor NV, Goldstein RS. Efficient Generation of Schwann Cells from Human Embryonic Stem Cell-Derived Neurospheres. Stem Cell Rev Rep. 2011;7(2):394-403.
- 31. Cui L, Jiang J, Wei L, Zhou X, Fraser JL, Snider BJ, et al. Transplantation of embryonic stem cells improves nerve repair and functional recovery after severe sciatic nerve axotomy in rats. Stem Cells. 2008;26(5):1356-1365.
- 32. Kubo T, Randolph MA, Groger A, Winograd JM. Embryonic Stem Cell-Derived Motor Neurons Form Neuromuscular Junctions In Vitro and Enhance Motor Functional Recovery In Vivo. Plastic and Reconstructive Surgery. 2009;123(2):139s-148s.
- 33. Yohn DC, Miles GB, Rafuse VF, Brownstone RM. Transplanted mouse embryonic stem-cell-derived motoneurons form functional motor units and reduce muscle atrophy. J Neurosci. 2008;28(47):12409-12418.
- 34. Carrier-Ruiz A, Evaristo-Mendonca F, Mendez-Otero R, Ribeiro-Resende VT. Biological behavior of mesenchymal stem cells on poly-epsilon-caprolactone filaments and a strategy for tissue engineering of segments of the peripheral nerves. Stem Cell Res Ther. 2015;6:128.
- 35. Plock JA, Schnider JT, Solari MG, Zheng XX, Gorantla VS. Perspectives on the use of mesenchymal stem cells in vascularized composite allotransplantation. Front Immunol. 2013;4:175.
- 36. Zhang JY, Deng ZH, Liao J, Song C, Liang C, Xue H, et al. Leptin attenuates cerebral ischemia injury through the promotion of energy metabolism via the PI3K/Akt pathway. J Cerebr Blood F Met. 2013;33(4):567-574.
- 37. Lakshmipathy U, Hart RP. Concise review: MicroRNA expression in multipotent mesenchymal stromal cells. Stem Cells. 2008;26(2):356-363.
- 38. Weiss JN, Levy S, Malkin A. Stem Cell Ophthalmology Treatment Study (SCOTS) for retinal and optic nerve diseases: a preliminary report. Neural Regeneration Research. 2015;10(6):982-988.
- 39. Tremp M, Schwabedissen MMZ, Kappos EA, Engels PE, Fischmann A, Scherberich A, et al. The Regeneration Potential After Human and Autologous Stem Cell Transplantation in a Rat Sciatic Nerve Injury Model Can Be Monitored by MRI. Cell Transplant. 2015;24(2):203-211.
- 40. Sakar M, Korkusuz P, Demirbilek M, Cetinkaya DU, Arslan S, Denkbaş EB, et al. The effect of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and human mesenchymal stem cell (hMSC) on axonal regeneration in experimental sciatic nerve damage. Int J Neurosci. 2014;124(9):685-696.
- 41. Napoli I, Noon LA, Ribeiro S, Kerai AP, Parrinello S, Rosenberg LH, et al. A Central Role for the ERK-Signaling Pathway in Controlling Schwann Cell Plasticity and Peripheral Nerve Regeneration In Vivo. Neuron. 2012;73(4):729-742.
- 42. Muraglia A, Todeschi MR, Papait A, Poggi A, Spano, Strada P, et al. Combined platelet and plasma derivatives enhance proliferation of stem/progenitor cells maintaining their differentiation potential. Cytotherapy. 2015;17(12):1793-1806.
- 43. Ikeda M, Uemura T, Takamatsu K, Okada M, Kazuki K, Tabata Y, et al. Acceleration of peripheral nerve regeneration using nerve conduits in combination with induced pluripotent stem cell technology and a basic fibroblast growth factor drug delivery system. J Biomed Mater Res A. 2014;102(5):1370-1378.
- 44. Choi SA, Lee JY, Kwon SE, Wang KC, Phi JH, Choi JW, et al. Human Adipose Tissue-Derived Mesenchymal Stem Cells Target Brain Tumor-Initiating Cells. Plos One. 2015;10(7):e0129292
- 45. Montaville P, Jamin N. Determination of Membrane Protein Structures Using Solution and Solid-State NMR. Methods Mol Biol. 2010;654:261-282.
- 46. Keilhoff G, Goihl A, Langnase K, Fansa H, Wolf G. Transdifferentiation of mesenchymal stem cells into Schwann cell-like myelinating cells. European Journal of Cell Biology. 2006;85(1):11-24.
- 47. Kratchmarova I, Blagoev B, Haack-Sorensen M, Kassem M, Mann M. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science. 2005;308(5727):1472-1477.
- 48. De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003;174(3):101-109.
- 49. Nagata H, Ii M, Kohbayashi E, Hoshiga M, Hanafusa T, Asahi M. Cardiac Adipose-Derived Stem Cells Exhibit High Differentiation Potential to Cardiovascular Cells in C57BL/6 Mice. Stem Cell Transl Med. 2016;5(2):141-151.
- 50. Muschler GF, Matsukura Y, Nitto H, Boehm CA, Valdevit AD, Kambic HE, et al. Selective retention of bone marrow-derived cells to enhance spinal fusion. Clin Orthop Relat R. 2005(432):242-251.
- 51. Kolar MK, Kingham PJ. Regenerative effects of adipose-tissue-derived stem cells for treatment of peripheral nerve injuries. Biochem Soc T. 2014;42:697-701.
- 52. Lin G, Garcia M, Ning H, Banie L, Guo YL, Lue TF, et al. Defining Stem and Progenitor Cells within Adipose Tissue. Stem Cells Dev. 2008;17(6):1053-1063.
- 53. Izadpanah R, Trygg C, Patel B, Kriedt C, Dufour J, Gimble JM, et al. Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem. 2006;99(5):1285-1297.
- 54. Kingham PJ, Kalbermatten DF, Mahay D, Armstrong SJ, Wiberg M, Terenghi G. Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Experimental Neurology. 2007;207(2):267-274.
- 55. Georgiou M, Golding JP, Loughlin AJ, Kingham PJ, Phillips JB. Engineered neural tissue with aligned, differentiated adipose-derived stem cells promotes peripheral nerve regeneration across a critical sized defect in rat sciatic nerve. Biomaterials. 2015;37:242-251.
- 56. di Summa PG, Kingham PJ, Raffoul W, Wiberg M, Terenghi G, Kalbermatten DF. Adipose-derived stem cells enhance peripheral nerve regeneration. J Plast Reconstr Aes. 2010;63(9):1544-1552.
- 57. Lavasani M, Thompson SD, Pollett JB, Usas A, Lu A, Stolz DB, et al. Human muscle-derived stem/progenitor cells promote functional murine peripheral nerve regeneration. J Clin Invest. 2014;124(4):1745-1756.
- 58. Tamaki T, Hirata M, Nakajima N, Saito K, Hashimoto H, Soeda S, et al. A Long-Gap Peripheral Nerve Injury Therapy Using Human Skeletal Muscle-Derived Stem Cells (Sk-SCs): An Achievement of Significant Morphological, Numerical and Functional Recovery. Plos One. 2016;11(11).
- 59. Beigi MH, Ghasemi-Mobarakeh L, Prabhakaran MP, Karbalaie K, Azadeh H, Ramakrishna S, et al. In vivo integration of poly(epsilon-caprolactone)/gelatin nanofibrous nerve guide seeded with teeth derived stem cells for peripheral nerve regeneration. J Biomed Mater Res A. 2014;102(12):4554-4567.
- 60. Sanen K, Martens W, Georgiou M, Ameloot M, Lambrichts I, Phillips J. Engineered neural tissue with Schwann cell differentiated human dental pulp stem cells: potential for peripheral nerve repair? J Tissue Eng Regen Med. 2017; 11(12):3362-3372.
- 61. Yamamoto T, Osako Y, Ito M, Murakami M, Hayashi Y, Horibe H, et al. Trophic Effects of Dental Pulp Stem Cells on Schwann Cells in Peripheral Nerve Regeneration. Cell Transplant. 2016;25(1):183-193.
- 62. Stratton JA, Shah PT, Kumar R, Stykel MG, Shapira Y, Grochmal J, et al. The immunomodulatory properties of adult skin-derived precursor Schwann cells: implications for peripheral nerve injury therapy. Eur J Neurosci. 2016;43(3):365-375.
- 63. Sparling JS, Bretzner F, Biernaskie J, Assinck P, Jiang Y, Arisato H, et al. Schwann Cells Generated from Neonatal Skin-Derived Precursors or Neonatal Peripheral Nerve Improve Functional Recovery after Acute Transplantation into the Partially Injured Cervical Spinal Cord of the Rat. Journal of Neuroscience. 2015;35(17):6714-6730.
- 64. Mozafari S, Laterza C, Roussel D, Bachelin C, Marteyn A, Deboux C, et al. Skin-derived neural precursors competitively generate functional myelin in adult demyelinated mice. J Clin Invest. 2015;125(9):3642-3656.
- 65. Khuong HT, Kumar R, Senjaya F, Grochmal J, Ivanovic A, Shakhbazau A, et al. Skin derived precursor Schwann cells improve behavioral recovery for acute and delayed nerve repair. Exp Neurol. 2014;254:168-179.
- 66. Mosahebi A, Wiberg M, Terenghi G. Addition of fibronectin to alginate matrix improves peripheral nerve regeneration in tissue-engineered conduits. Tissue Eng. 2003;9(2):209-218.
- 67. Pan HC, Yang DY, Ho SP, Sheu ML, Chen CJ, Hwang SM, et al. Escalated regeneration in sciatic nerve crush injury by the combined therapy of human amniotic fluid mesenchymal stem cells and fermented soybean extracts, Natto. J Biomed Sci. 2009;16:75.
- 68. Liao W, Zhong J, Yu J, Xie J, Liu Y, Du L, et al. Therapeutic benefit of human umbilical cord derived mesenchymal stromal cells in intracerebral hemorrhage rat: implications of anti-inflammation and angiogenesis. Cell Physiol Biochem. 2009;24(3-4):307-316.
- 69. Chen CJ, Cheng FC, Su HL, Sheu ML, Lu ZH, Chiang CY, et al. Improved Neurological Outcome by Intramuscular Injection of Human Amniotic Fluid Derived Stem Cells in a Muscle Denervation Model. Plos One. 2015;10(5):e0124624.
- 70. Rutka JT. Dual regeneration of muscle and nerve by intravenous administration of human amniotic fluid-derived mesenchymal stem cells regulated by stromal cell-derived factor-1 alpha in a sciatic nerve injury model (vol 116, pg 1357, 2012). Journal of Neurosurgery. 2015;123(6):1605-1605.
- 71. Hao L, Zhang C, Chen XH, Zou ZM, Zhang X, Kong PY, et al. Human umbilical cord blood-derived stromal cells suppress xenogeneic immune cell response in vitro. Croat Med J. 2009;50(4):351-360.
- 72. Vendrame M, Gemma C, de Mesquita D, Collier L, Bickford PC, Sanberg CD, et al. Anti-inflammatory effects of human cord blood cells in a rat model of stroke. Stem Cells Dev. 2005;14(5):595-604.
- 73. Sung MA, Jung HJ, Lee JW, Lee JY, Pang KM, Yoo SB, et al. Human umbilical cord blood-derived mesenchymal stem cells promote regeneration of crush-injured rat sciatic nerves. Neural Regen Res. 2012;7(26):2018-2027.
- 74. Yan-Wu G, Yi-Quan K, Ming L, Ying-Qian C, Xiao-Dan J, Shi-Zhong Z, et al. Human Umbilical Cord-Derived Schwann-Like Cell Transplantation Combined with Neurotrophin-3 Administration in Dyskinesia of Rats with Spinal Cord Injury. Neurochem Res. 2011;36(5):783-792.
- 75. Veeravalli KK, Dasari VR, Fassett D, Dinh DH, Rao JS. Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Upregulate Myelin Basic Protein in Shiverer Mice. Stem Cells Dev. 2011;20(5):881-891.
- 76. Matsuse D, Kitada M, Kohama M, Nishikawa K, Makinoshima H, Wakao S, et al. Human Umbilical Cord-Derived Mesenchymal Stromal Cells Differentiate Into Functional Schwann Cells That Sustain Peripheral Nerve Regeneration. J Neuropath Exp Neur. 2010;69(9):973-985.
- 77. Lopatina T, Bruno S, Tetta C, Kalinina N, Porta M, Camussi G. Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential. Cell Commun Signal. 2014;12:26.
- 78. Uemura T, Takamatsu K, Ikeda M, Okada M, Kazuki K, Ikada Y, et al. Transplantation of induced pluripotent stem cell-derived neurospheres for peripheral nerve repair. Biochem Biophys Res Commun. 2012;419(1):130-135.
- 79. Wang A, Tang Z, Park IH, Zhu Y, Patel S, Daley GQ, et al. Induced pluripotent stem cells for neural tissue engineering. Biomaterials. 2011;32(22):5023-5032.
- 80. Uemura T, Ikeda M, Takamatsu K, Yokoi T, Okada M, Nakamura H. Long-term efficacy and safety outcomes of transplantation of induced pluripotent stem cell-derived neurospheres with bioabsorbable nerve conduits for peripheral nerve regeneration in mice. Cells Tissues Organs. 2014;200(1):78-91.
- 81. Zarbakhsh S, Goudarzi N, Shirmohammadi M, Safari M. Histological Study of Bone Marrow and Umbilical Cord Stromal Cell Transplantation in Regenerating Rat Peripheral Nerve. Cell J. 2016;17(4):668-677.
- 82. McKenzie IA, Biernaskie J, Toma JG, Midha R, Miller FD. Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system. J Neurosci. 2006;26(24):6651-6660.
- 83. Lee DC, Chen JH, Hsu TY, Chang LH, Chang H, Chi YH, et al. Neural stem cells promote nerve regeneration through IL12-induced Schwann cell differentiation. Mol Cell Neurosci. 2017;79:1-11.
- 84. Cheng FC, Tai MH, Sheu ML, Chen CJ, Yang DY, Su HL, et al. Enhancement of regeneration with glia cell line-derived neurotrophic factor-transduced human amniotic fluid mesenchymal stem cells after sciatic nerve crush injury. J Neurosurg. 2010;112(4):868-879.
- 85. di Summa PG, Kingham PJ, Raffoul W, Wiberg M, Terenghi G, Kalbermatten DF. Adipose-derived stem cells enhance peripheral nerve regeneration. J Plast Reconstr Aesthet Surg. 2010;63(9):1544-1552.
- 86. Magown P, Rafuse VF, Brownstone RM. Microcircuit formation following transplantation of mouse embryonic stem cell-derived neurons into peripheral nerve. J Neurophysiol. 2017;117(4):1683-1689.
- 87. Amoh Y, Katsuoka K, Hoffman RM. Peripheral-Nerve and Spinal-Cord Regeneration in Mice Using Hair-Follicle-Associated Pluripotent (HAP) Stem Cells. Methods Mol Biol. 2016;1453:21-32.
Periferik Sinir Rejenerasyonu ve Kök Hücre Tedavileri
Yıl 2018,
Cilt: 8 Sayı: 2, 182 - 192, 29.06.2018
Aydın Him
,
Mehmet Emin Onger
,
Burcu Delibas
Öz
Bu derlemede yazarlar kök hücre/progenitör hücre transplantasyonunun sinir hasarlarının iyileştirilmesinde kullanımı ile ilgili yakın zamandaki gelişmeler ve bu alandaki başlıca çalışmalar hakkında bilgi vermeyi amaçlamaktadır. Periferik sinirlerin akson rejenerasyonu ve hedef dokularını tekrar innerve etme potansiyeline sahip olmalarına rağmen ağır sinir hasarı durumlarında düzelme sınırlı kalmaktadır. Denervasyona uğramış periferik sinirin Schwann hücrelerinin rejenerasyonda yeteri kadar rol alamayışlarından dolayı denerve olmuş distal sinir dokusu ortamının dış kaynaklı doku hücreleriyle desteklenmesi yaklaşımı gerçekçi görülmüştür. Çeşitli kök hücrelerinin periferik sinir rejenerasyonundaki etkileri çalışılmıştır. Deri, kemik iliği ve yağ doku kökenli kök hücreleri Schwann hücrelerine dönüşme kapasiteleriyle en ümit verici adaylar olarak belirlenmiştir. Pluripotent indüklenmiş kök hücre denemelerine ek olarak, yakın zamanlarda yapılan çalışmalar kök hücrelerinde büyüme faktörlerinin ifadesinin uyarılması da rejenerasyonda önemli potansiyele sahiptir. Kök hücrelerinin etkili kullanılabilecek kaynak olmaları ve sinir rejenerasyonunda ümit verici faktörler olduklarının düşünülmesine rağmen bu hücre tedavi potansiyellerinin klinikte kullanılması için gerekli ideal yöntemler henüz oluşturulamamıştır.
Kaynakça
- 1. Letourneau PC. Immunocytochemical evidence for colocalization in neurite growth cones of actin and myosin and their relationship to cell--substratum adhesions. Dev Biol. 1981;85(1):113-122.
- 2. Napoli I, Noon LA, Ribeiro S, Kerai AP, Parrinello S, Rosenberg LH, et al. A central role for the ERK-signaling pathway in controlling Schwann cell plasticity and peripheral nerve regeneration in vivo. Neuron. 2012;73(4):729-742.
- 3. Marconi S, Castiglione G, Turano E, Bissolotti G, Angiari S, Farinazzo A, et al. Human adipose-derived mesenchymal stem cells systemically injected promote peripheral nerve regeneration in the mouse model of sciatic crush. Tissue Eng Part A. 2012;18(11-12):1264-1272.
- 4. Forman DS, Berenberg RA. Regeneration of motor axons in the rat sciatic nerve studied by labeling with axonally transported radioactive proteins. Brain Res. 1978;156(2):213-225.
- 5. Daly W, Yao L, Zeugolis D, Windebank A, Pandit A. A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. J R Soc Interface. 2012;9(67):202-221.
- 6. Webber CA, Christie KJ, Cheng C, Martinez JA, Singh B, Singh V, et al. Schwann cells direct peripheral nerve regeneration through the Netrin-1 receptors, DCC and Unc5H2. Glia. 2011;59(10):1503-1517.
- 7. Satinsky D, Pepe FA, Liu CN. The Neurilemma Cell in Peripheral Nerve Degeneration and Regeneration. Exp Neurol. 1964;9:441-451.
- 8. Ladak A, Olson J, Tredget EE, Gordon T. Differentiation of mesenchymal stem cells to support peripheral nerve regeneration in a rat model. Exp Neurol. 2011;228(2):242-252.
- 9. Cragg BG, Thomas PK. The Conduction Velocity of Regenerated Peripheral Nerve Fibres. J Physiol. 1964;171:164-175.
- 10. Shen Y, Mani S, Donovan SL, Schwob JE, Meiri KF. Growth-associated protein-43 is required for commissural axon guidance in the developing vertebrate nervous system. J Neurosci. 2002;22(1):239-247.
- 11. Fawcett JW, Keynes RJ. Peripheral nerve regeneration. Annu Rev Neurosci. 1990;13:43-60.
- 12. Sun WJ, Sun CK, Zhao H, Lin H, Han Q, Wang J, et al. Improvement of Sciatic Nerve Regeneration Using Laminin-Binding Human NGF-beta. Plos One. 2009;4(7): e6180.
- 13. Davis GE, Manthorpe M, Williams LR, Varon S. Characterization of a Laminin-Containing Neurite-Promoting Factor and a Neuronotrophic Factor from Peripheral-Nerve and Related Sources. Ann Ny Acad Sci. 1986;486:194-205.
- 14. Madison R, Dasilva CF, Dikkes P, Chiu TH, Sidman RL. Increased Rate of Peripheral-Nerve Regeneration Using Bioresorbable Nerve Guides and a Laminin-Containing Gel. Experimental Neurology. 1985;88(3):767-772.
- 15. Nie X, Zhang YJ, Tian WD, Jiang M, Dong R, Chen JW, et al. Improvement of peripheral nerve regeneration by a tissue-engineered nerve filled with ectomesenchymal stem cells. Int J Oral Max Surg. 2007;36(1):32-38.
- 16. Widerberg A, Kanje M, Dahlin LB. Tourniquet compression: a non-invasive method to enhance nerve regeneration in nerve grafts. Neuroreport. 2002;13(4):371-375.
- 17. Ogata T, Iijima S, Hoshikawa S, Miura T, Yamamoto S, Oda H, et al. Opposing extracellular signal-regulated kinase and Akt pathways control Schwann cell myelination. J Neurosci. 2004;24(30):6724-6732.
- 18. Atanasoski S, Notterpek L, Lee HY, Castagner F, Young P, Ehrengruber MU, et al. The protooncogene Ski Schwann cell proliferation controls and myelination. Neuron. 2004;43(4):499-511.
- 19. Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M, et al. Methylprednisolone or tirilazad mesylate administration after acute spinal cord injury: 1-year follow up. Results of the third National Acute Spinal Cord Injury randomized controlled trial. J Neurosurg. 1998;89(5):699-706.
- 20. Chen C, Hill LD, Schubert CM, Strauss JF, Matthews CA. Is laminin gamma-1 a candidate gene for advanced pelvic organ prolapse? Am J Obstet Gynecol. 2010;202(5): 505.e1-5.
- 21. Masaki T, Matsumura K, Saito F, Sunada Y, Shimizu T, Yorifuji H, et al. Expression of dystroglycan and laminin-2 in peripheral nerve under axonal degeneration and regeneration. Acta Neuropathol. 2000;99(3):289-295.
- 22. Saito F, Moore SA, Barresi R, Henry MD, Messing A, Ross-Barta SE, et al. Unique role of dystroglycan in peripheral nerve myelination, nodal structure, and sodium channel stabilization. Neuron. 2003;38(5):747-758.
- 23. Williams AC, Brophy PJ. The function of the Periaxin gene during nerve repair in a model of CMT4F. J Anat. 2002;200(4):323-330.
- 24. Akassoglou K, Yu WM, Akpinar P, Strickland S. Fibrin inhibits peripheral nerve remyelination by regulating Schwann cell differentiation. Neuron. 2002;33(6):861-875.
- 25. Melcangi RC, Cavarretta IT, Ballabio M, Leonelli E, Schenone A, Azcoitia I, et al. Peripheral nerves: a target for the action of neuroactive steroids. Brain Res Brain Res Rev. 2005;48(2):328-338.
- 26. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105-111.
- 27. Thomson JA. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5395):1827-1827.
- 28. Jiang YH, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418:41-49.
- 29. Pomp O, Brokhman I, Ziegler L, Almog M, Korngreen A, Tavian M, et al. PA6-induced human embryonic stem cell-derived neurospheres: a new source of human peripheral sensory neurons and neural crest cells. Brain Res. 2008;1230:50-60.
- 30. Ziegler L, Grigoryan S, Yang IH, Thakor NV, Goldstein RS. Efficient Generation of Schwann Cells from Human Embryonic Stem Cell-Derived Neurospheres. Stem Cell Rev Rep. 2011;7(2):394-403.
- 31. Cui L, Jiang J, Wei L, Zhou X, Fraser JL, Snider BJ, et al. Transplantation of embryonic stem cells improves nerve repair and functional recovery after severe sciatic nerve axotomy in rats. Stem Cells. 2008;26(5):1356-1365.
- 32. Kubo T, Randolph MA, Groger A, Winograd JM. Embryonic Stem Cell-Derived Motor Neurons Form Neuromuscular Junctions In Vitro and Enhance Motor Functional Recovery In Vivo. Plastic and Reconstructive Surgery. 2009;123(2):139s-148s.
- 33. Yohn DC, Miles GB, Rafuse VF, Brownstone RM. Transplanted mouse embryonic stem-cell-derived motoneurons form functional motor units and reduce muscle atrophy. J Neurosci. 2008;28(47):12409-12418.
- 34. Carrier-Ruiz A, Evaristo-Mendonca F, Mendez-Otero R, Ribeiro-Resende VT. Biological behavior of mesenchymal stem cells on poly-epsilon-caprolactone filaments and a strategy for tissue engineering of segments of the peripheral nerves. Stem Cell Res Ther. 2015;6:128.
- 35. Plock JA, Schnider JT, Solari MG, Zheng XX, Gorantla VS. Perspectives on the use of mesenchymal stem cells in vascularized composite allotransplantation. Front Immunol. 2013;4:175.
- 36. Zhang JY, Deng ZH, Liao J, Song C, Liang C, Xue H, et al. Leptin attenuates cerebral ischemia injury through the promotion of energy metabolism via the PI3K/Akt pathway. J Cerebr Blood F Met. 2013;33(4):567-574.
- 37. Lakshmipathy U, Hart RP. Concise review: MicroRNA expression in multipotent mesenchymal stromal cells. Stem Cells. 2008;26(2):356-363.
- 38. Weiss JN, Levy S, Malkin A. Stem Cell Ophthalmology Treatment Study (SCOTS) for retinal and optic nerve diseases: a preliminary report. Neural Regeneration Research. 2015;10(6):982-988.
- 39. Tremp M, Schwabedissen MMZ, Kappos EA, Engels PE, Fischmann A, Scherberich A, et al. The Regeneration Potential After Human and Autologous Stem Cell Transplantation in a Rat Sciatic Nerve Injury Model Can Be Monitored by MRI. Cell Transplant. 2015;24(2):203-211.
- 40. Sakar M, Korkusuz P, Demirbilek M, Cetinkaya DU, Arslan S, Denkbaş EB, et al. The effect of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and human mesenchymal stem cell (hMSC) on axonal regeneration in experimental sciatic nerve damage. Int J Neurosci. 2014;124(9):685-696.
- 41. Napoli I, Noon LA, Ribeiro S, Kerai AP, Parrinello S, Rosenberg LH, et al. A Central Role for the ERK-Signaling Pathway in Controlling Schwann Cell Plasticity and Peripheral Nerve Regeneration In Vivo. Neuron. 2012;73(4):729-742.
- 42. Muraglia A, Todeschi MR, Papait A, Poggi A, Spano, Strada P, et al. Combined platelet and plasma derivatives enhance proliferation of stem/progenitor cells maintaining their differentiation potential. Cytotherapy. 2015;17(12):1793-1806.
- 43. Ikeda M, Uemura T, Takamatsu K, Okada M, Kazuki K, Tabata Y, et al. Acceleration of peripheral nerve regeneration using nerve conduits in combination with induced pluripotent stem cell technology and a basic fibroblast growth factor drug delivery system. J Biomed Mater Res A. 2014;102(5):1370-1378.
- 44. Choi SA, Lee JY, Kwon SE, Wang KC, Phi JH, Choi JW, et al. Human Adipose Tissue-Derived Mesenchymal Stem Cells Target Brain Tumor-Initiating Cells. Plos One. 2015;10(7):e0129292
- 45. Montaville P, Jamin N. Determination of Membrane Protein Structures Using Solution and Solid-State NMR. Methods Mol Biol. 2010;654:261-282.
- 46. Keilhoff G, Goihl A, Langnase K, Fansa H, Wolf G. Transdifferentiation of mesenchymal stem cells into Schwann cell-like myelinating cells. European Journal of Cell Biology. 2006;85(1):11-24.
- 47. Kratchmarova I, Blagoev B, Haack-Sorensen M, Kassem M, Mann M. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science. 2005;308(5727):1472-1477.
- 48. De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003;174(3):101-109.
- 49. Nagata H, Ii M, Kohbayashi E, Hoshiga M, Hanafusa T, Asahi M. Cardiac Adipose-Derived Stem Cells Exhibit High Differentiation Potential to Cardiovascular Cells in C57BL/6 Mice. Stem Cell Transl Med. 2016;5(2):141-151.
- 50. Muschler GF, Matsukura Y, Nitto H, Boehm CA, Valdevit AD, Kambic HE, et al. Selective retention of bone marrow-derived cells to enhance spinal fusion. Clin Orthop Relat R. 2005(432):242-251.
- 51. Kolar MK, Kingham PJ. Regenerative effects of adipose-tissue-derived stem cells for treatment of peripheral nerve injuries. Biochem Soc T. 2014;42:697-701.
- 52. Lin G, Garcia M, Ning H, Banie L, Guo YL, Lue TF, et al. Defining Stem and Progenitor Cells within Adipose Tissue. Stem Cells Dev. 2008;17(6):1053-1063.
- 53. Izadpanah R, Trygg C, Patel B, Kriedt C, Dufour J, Gimble JM, et al. Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem. 2006;99(5):1285-1297.
- 54. Kingham PJ, Kalbermatten DF, Mahay D, Armstrong SJ, Wiberg M, Terenghi G. Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Experimental Neurology. 2007;207(2):267-274.
- 55. Georgiou M, Golding JP, Loughlin AJ, Kingham PJ, Phillips JB. Engineered neural tissue with aligned, differentiated adipose-derived stem cells promotes peripheral nerve regeneration across a critical sized defect in rat sciatic nerve. Biomaterials. 2015;37:242-251.
- 56. di Summa PG, Kingham PJ, Raffoul W, Wiberg M, Terenghi G, Kalbermatten DF. Adipose-derived stem cells enhance peripheral nerve regeneration. J Plast Reconstr Aes. 2010;63(9):1544-1552.
- 57. Lavasani M, Thompson SD, Pollett JB, Usas A, Lu A, Stolz DB, et al. Human muscle-derived stem/progenitor cells promote functional murine peripheral nerve regeneration. J Clin Invest. 2014;124(4):1745-1756.
- 58. Tamaki T, Hirata M, Nakajima N, Saito K, Hashimoto H, Soeda S, et al. A Long-Gap Peripheral Nerve Injury Therapy Using Human Skeletal Muscle-Derived Stem Cells (Sk-SCs): An Achievement of Significant Morphological, Numerical and Functional Recovery. Plos One. 2016;11(11).
- 59. Beigi MH, Ghasemi-Mobarakeh L, Prabhakaran MP, Karbalaie K, Azadeh H, Ramakrishna S, et al. In vivo integration of poly(epsilon-caprolactone)/gelatin nanofibrous nerve guide seeded with teeth derived stem cells for peripheral nerve regeneration. J Biomed Mater Res A. 2014;102(12):4554-4567.
- 60. Sanen K, Martens W, Georgiou M, Ameloot M, Lambrichts I, Phillips J. Engineered neural tissue with Schwann cell differentiated human dental pulp stem cells: potential for peripheral nerve repair? J Tissue Eng Regen Med. 2017; 11(12):3362-3372.
- 61. Yamamoto T, Osako Y, Ito M, Murakami M, Hayashi Y, Horibe H, et al. Trophic Effects of Dental Pulp Stem Cells on Schwann Cells in Peripheral Nerve Regeneration. Cell Transplant. 2016;25(1):183-193.
- 62. Stratton JA, Shah PT, Kumar R, Stykel MG, Shapira Y, Grochmal J, et al. The immunomodulatory properties of adult skin-derived precursor Schwann cells: implications for peripheral nerve injury therapy. Eur J Neurosci. 2016;43(3):365-375.
- 63. Sparling JS, Bretzner F, Biernaskie J, Assinck P, Jiang Y, Arisato H, et al. Schwann Cells Generated from Neonatal Skin-Derived Precursors or Neonatal Peripheral Nerve Improve Functional Recovery after Acute Transplantation into the Partially Injured Cervical Spinal Cord of the Rat. Journal of Neuroscience. 2015;35(17):6714-6730.
- 64. Mozafari S, Laterza C, Roussel D, Bachelin C, Marteyn A, Deboux C, et al. Skin-derived neural precursors competitively generate functional myelin in adult demyelinated mice. J Clin Invest. 2015;125(9):3642-3656.
- 65. Khuong HT, Kumar R, Senjaya F, Grochmal J, Ivanovic A, Shakhbazau A, et al. Skin derived precursor Schwann cells improve behavioral recovery for acute and delayed nerve repair. Exp Neurol. 2014;254:168-179.
- 66. Mosahebi A, Wiberg M, Terenghi G. Addition of fibronectin to alginate matrix improves peripheral nerve regeneration in tissue-engineered conduits. Tissue Eng. 2003;9(2):209-218.
- 67. Pan HC, Yang DY, Ho SP, Sheu ML, Chen CJ, Hwang SM, et al. Escalated regeneration in sciatic nerve crush injury by the combined therapy of human amniotic fluid mesenchymal stem cells and fermented soybean extracts, Natto. J Biomed Sci. 2009;16:75.
- 68. Liao W, Zhong J, Yu J, Xie J, Liu Y, Du L, et al. Therapeutic benefit of human umbilical cord derived mesenchymal stromal cells in intracerebral hemorrhage rat: implications of anti-inflammation and angiogenesis. Cell Physiol Biochem. 2009;24(3-4):307-316.
- 69. Chen CJ, Cheng FC, Su HL, Sheu ML, Lu ZH, Chiang CY, et al. Improved Neurological Outcome by Intramuscular Injection of Human Amniotic Fluid Derived Stem Cells in a Muscle Denervation Model. Plos One. 2015;10(5):e0124624.
- 70. Rutka JT. Dual regeneration of muscle and nerve by intravenous administration of human amniotic fluid-derived mesenchymal stem cells regulated by stromal cell-derived factor-1 alpha in a sciatic nerve injury model (vol 116, pg 1357, 2012). Journal of Neurosurgery. 2015;123(6):1605-1605.
- 71. Hao L, Zhang C, Chen XH, Zou ZM, Zhang X, Kong PY, et al. Human umbilical cord blood-derived stromal cells suppress xenogeneic immune cell response in vitro. Croat Med J. 2009;50(4):351-360.
- 72. Vendrame M, Gemma C, de Mesquita D, Collier L, Bickford PC, Sanberg CD, et al. Anti-inflammatory effects of human cord blood cells in a rat model of stroke. Stem Cells Dev. 2005;14(5):595-604.
- 73. Sung MA, Jung HJ, Lee JW, Lee JY, Pang KM, Yoo SB, et al. Human umbilical cord blood-derived mesenchymal stem cells promote regeneration of crush-injured rat sciatic nerves. Neural Regen Res. 2012;7(26):2018-2027.
- 74. Yan-Wu G, Yi-Quan K, Ming L, Ying-Qian C, Xiao-Dan J, Shi-Zhong Z, et al. Human Umbilical Cord-Derived Schwann-Like Cell Transplantation Combined with Neurotrophin-3 Administration in Dyskinesia of Rats with Spinal Cord Injury. Neurochem Res. 2011;36(5):783-792.
- 75. Veeravalli KK, Dasari VR, Fassett D, Dinh DH, Rao JS. Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Upregulate Myelin Basic Protein in Shiverer Mice. Stem Cells Dev. 2011;20(5):881-891.
- 76. Matsuse D, Kitada M, Kohama M, Nishikawa K, Makinoshima H, Wakao S, et al. Human Umbilical Cord-Derived Mesenchymal Stromal Cells Differentiate Into Functional Schwann Cells That Sustain Peripheral Nerve Regeneration. J Neuropath Exp Neur. 2010;69(9):973-985.
- 77. Lopatina T, Bruno S, Tetta C, Kalinina N, Porta M, Camussi G. Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential. Cell Commun Signal. 2014;12:26.
- 78. Uemura T, Takamatsu K, Ikeda M, Okada M, Kazuki K, Ikada Y, et al. Transplantation of induced pluripotent stem cell-derived neurospheres for peripheral nerve repair. Biochem Biophys Res Commun. 2012;419(1):130-135.
- 79. Wang A, Tang Z, Park IH, Zhu Y, Patel S, Daley GQ, et al. Induced pluripotent stem cells for neural tissue engineering. Biomaterials. 2011;32(22):5023-5032.
- 80. Uemura T, Ikeda M, Takamatsu K, Yokoi T, Okada M, Nakamura H. Long-term efficacy and safety outcomes of transplantation of induced pluripotent stem cell-derived neurospheres with bioabsorbable nerve conduits for peripheral nerve regeneration in mice. Cells Tissues Organs. 2014;200(1):78-91.
- 81. Zarbakhsh S, Goudarzi N, Shirmohammadi M, Safari M. Histological Study of Bone Marrow and Umbilical Cord Stromal Cell Transplantation in Regenerating Rat Peripheral Nerve. Cell J. 2016;17(4):668-677.
- 82. McKenzie IA, Biernaskie J, Toma JG, Midha R, Miller FD. Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system. J Neurosci. 2006;26(24):6651-6660.
- 83. Lee DC, Chen JH, Hsu TY, Chang LH, Chang H, Chi YH, et al. Neural stem cells promote nerve regeneration through IL12-induced Schwann cell differentiation. Mol Cell Neurosci. 2017;79:1-11.
- 84. Cheng FC, Tai MH, Sheu ML, Chen CJ, Yang DY, Su HL, et al. Enhancement of regeneration with glia cell line-derived neurotrophic factor-transduced human amniotic fluid mesenchymal stem cells after sciatic nerve crush injury. J Neurosurg. 2010;112(4):868-879.
- 85. di Summa PG, Kingham PJ, Raffoul W, Wiberg M, Terenghi G, Kalbermatten DF. Adipose-derived stem cells enhance peripheral nerve regeneration. J Plast Reconstr Aesthet Surg. 2010;63(9):1544-1552.
- 86. Magown P, Rafuse VF, Brownstone RM. Microcircuit formation following transplantation of mouse embryonic stem cell-derived neurons into peripheral nerve. J Neurophysiol. 2017;117(4):1683-1689.
- 87. Amoh Y, Katsuoka K, Hoffman RM. Peripheral-Nerve and Spinal-Cord Regeneration in Mice Using Hair-Follicle-Associated Pluripotent (HAP) Stem Cells. Methods Mol Biol. 2016;1453:21-32.