Araştırma Makalesi
BibTex RIS Kaynak Göster

BORIC ACID AMELIORATES LIVER INJURY IN RAT INDUCED BY CYCLOPHOSPHAMIDE

Yıl 2023, Cilt: 13 Sayı: 2, 210 - 216, 30.06.2023
https://doi.org/10.31832/smj.1246705

Öz

Introduction: The aim of the current study was to look into any potential ameliorative benefits of boric acid on liver damage in rats caused by cyclophosphamide (CTX).
Materials and Methods: Four groups; control, boric acid, CTX, and boric acid + CTX, were created. Female Wistar albino rats were given daily injections of CTX (75 mg/kg) to create the liver damage model. Cyclophosphamide (75 mg/kg) was administered intraperitoneally, and boron (1.3 g/rat/day) was administered by gavage every day for two weeks in the boric acid+CTX group. The histopathological changes were evaluated in ovarian tissue staining with hematoxylin and eosin, masson tricrom, and periodic acid Schiff. We assessed ovarian tissue enzyme activity as malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px).
Results: Images in the boric acid+CTX group had lower histological evaluations than those in the CTX group under the light microscope. According to the findings, boric acid reduced the levels of malondialdehyde (MDA) in the liver tissues. Additionally, boric acid improved the actions of oxidative stress indicators to reduce oxidative stress brought on by CTX and upregulated antioxidant parameters.
Conclusion: In conclusion, our study have demonstrated that CTX- induced liver injury can be alleviated by reducing the tissue MDA levels, increasing the liver’s SOD, GSH-Px, and CAT activities. In order to reduce the liver damage caused by CTX, boric acid may be administered as a dietary supplement or functional food.

Kaynakça

  • Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK547852/
  • Hasanah YIF, Harahap Y, Purwanto DJ. Phenotyping study of cyclophosphamide 4-hydroxylation in malay cancer patients. Drug Des Devel Ther 2021; 15: 305–313.
  • Caglayan C, Temel Y, Kandemir FM, Yildirim S, Kucukler S. Naringin protects against cyclophosphamide-induced hepatotoxicity and nephrotoxicity through modulation of oxidative stress, inflammation, apoptosis, autophagy, and DNA damage. Environ Sci Pollu Res 2018; 25(21): 20968–20984.
  • Caglayan C. The effects of naringin on different cyclophos- phamide-induced organ toxicities in rats: investigation of changes in some metabolic enzyme activities. Environ Sci Pollut Res 2019; 26(26): 26664–26673.
  • Ghareeb MA, Sobeh M, El-Maadawy WH, Mohammed HS, Khalil H, et al. Chemical profiling of polyphenolics in eucalyptus globulus and evaluation of its hepato-renal protective potential against cyclophosphamide induced toxicity in mice. Antioxidants 2019; 8(9): 415.
  • Hamzeh M, Hosseinimehr SJ, Khalatbary AR, Mohammadi HR, Dashti A, Amiri FT. Atorvastatin mitigates cyclophosphamide-induced hepatotoxicity via suppression of oxidative stress and apoptosis in rat model. Res Pharm Sci. 2018;13(5): 440-449.
  • Cruz-Valencia R, Arvizu-Flores AA, Rosas-Rodríguez JA, Valen- zuela-Soto EM. Effect of the drug cyclophosphamide on the activity of porcine kidney betaine aldehyde dehydrogenase.Mol Cell Biochemi 2021; 476(3): 1467–1475.
  • Adikwu E, Bokolo B. Effect of cimetidine on cyclophosphamide-induced liver toxicity in albino rats. Asia J Medical Sci 2018; 9(5): 50–56.
  • Wang X, Martínez MA, Cheng G, Liu Z, Huang L, Dai M, et al. The critical role of oxidative stress in the toxicity and metabolism of quinoxaline 1,4-di-N-oxides in vitro and in vivo. Drug Metab Rev 2016; 48(2): 159-182.
  • Devirian TA, Volpe SL. The physiological effects of dietary boron. Crit Rev Food Sci Nutr. 2003; 43(2): 219– 231.
  • Khaliq H, Juming Z, Ke-Mei P. The physiological role of boron on health. Biol Trace Elem Res. 2018; 186(1): 31–51.
  • Abdelnour SA, Abd El-Hack ME, Swelum AA, Perillo A, Losacco C. The vital roles of boron in animal health and production: a comprehensive review. J Trace Elem Med Biol 2018; 50: 296–304.
  • Türkez H, Geyikoǧlu F, Tatar A, Keleş S, Özkan A. Effects of some boron compounds on peripheral human blood. Zeitschrift für Naturforsch C 2007; 62: 889–896.
  • Nair DV, Rani MU, Reddy AG, Kumar BK, Reddy MA, Lakshman M, et al. Protective effect of alpha-lipoic acid and omega-3 fatty acids against cyclophosohamide-induced ovarian toxicity in rats. Vet world 2020; 13: 188-196.
  • Yeral I, Dayangan Sayan C. Magnesium Sulfate Has Potential Scavenging Effects on Cyclophosphamide-Induced Ovarian Damage in. A Rat Model. JCOG 2019; 29(1): 24-30.
  • Çolak S, Koç K, Yıldırım S, Geyikoğlu F. Effects of boric acid on ovarian tissue damage caused by experimental ischemia/reperfusion. Biotechnic & Histochemistry. 2022; 97(6): 415-422.
  • Karimkhani H, Özkoç M, Shojaolsadati P, Uzuner K, Burukoglu Donmez D, Kanbak G. Protective Effect of Boric Acid and Omega-3 on Myocardial Infarction in an Experimental Rat Model. Biological Trace Element Research 2021; 199: 2612–2620.
  • Shirani K, Yousefsani BS, Shirani M, Karimi G. Protective effects of naringin against drugs and chemical toxins induced hepatotoxicity: a review. Phytother Res 2020; 34(8): 1734–1744.
  • Bhattacharya T, Maishu SP, Akter R, Rahman MH, Akhtar MF, Saleem A, et al. A review on natural sources derived protein nanoparticles as anticancer agents. Curr Top Med Chem 2021; 21(12): 1014–1026.
  • Iqubal A, Iqubal MK, Sharma S, Ansari MA, Najmi AK, Ali SM, et al. Molecular mechanism involved in cyclophos- phamide-induced cardiotoxicity: Old drug with a new vision. Life Sci 2019; 218: 112–131.
  • Zhai J, Zhang F, Gao S, Chen L, Feng G, Yin J, et al. Schisan- dra chinensis extract decreases chloroacetaldehyde production in rats and attenuates cyclophosphamide toxicity in liver, kidney and brain. J Ethnopharmacol 2018; 210: 223–231.
  • Ince S, Kucukkurt HH, Demirel DA, Acaroz E, Akbel IH, Cigerci İH. Protective effects of boron on cyclophosphamide induced lipid peroxidation and genotoxicity in rats, Chemosphere 2014; 108: 197–204.
  • Sogut I, Paltun SO, Tuncdemir M, Ersöz M, Hurdag C (2018) The antioxidant and antiapoptotic effect of boric acid on hepatoxicity in chronic alcohol-fed rats. Can J Physiol Pharmacol 96(4): 404–411. https://doi.org/10.1139/cjpp-2017-0487.
  • Kyle ME, Miccadei S, Nakae D, Farber JL (1987) Superoxide dismutase and catalase protect cultured hepatocytes from the cytotoxicity of acetominophen. Biochem Biophys Res Commun 149: 889–896. https://doi.org/10.1016/0006-291X(87)90491-8
  • Baran M, Yay A, Onder GO, Canturk Tan F, Yalcin B, Balcioglu E et al (2022) Hepatotoxicity and renal toxicity induced by radiation and the protective effect of quercetin in male albino rats, International Journal of Radiation Biology, 98:9, 1473-1483, DOI: 10.1080/09553002.2022.2033339
  • Cengiz M. Boric acid protects against cyclophosphamide-induced oxidative stress and renal damage in rats, Cell Mol Biol 2018; 64(12): 11–14.
  • Sogut I, Paltun SO, Tuncdemir M, Ersoz M, Hurdag C. The antioxidant and antiapoptotic effect of boric acid on hepatoxicity in chronic alcohol-fed rats, Can J Physiol Pharmacol 2018; 96(4): 404–411.
  • Ince S, Keles H, Erdogan M, Hazman O, Kucukkurt I, Protective effect of boric acid against carbon tetrachloride-induced hepatotoxicity in mice, Drug Chem. Toxicol. 2012; 35(3): 285–292.
  • Wang J, Li M, Zhang W, Gu A, Dong J, Li J, et al. Protective effect of n-acetylcysteine against oxidative stress induced by zearalenone via mitochondrial apoptosis pathway in SIEC02 cells. Toxins 2018; 10(10): 407.
  • Kuang H, Jiao Y, Wang W, Wang F, Chen Q. Characterization and antioxidant activities of intracellular polysaccharides from Agaricus bitorquis (QuéL.) Sacc. Chaidam ZJU-CDMA-12. Int J Biol Macromol 2020; 156: 1112–1125.

BORİK ASİT SIÇANLARDA SİKLOFOSFAMİDİN NEDEN OLDUĞU KARACİĞER HASARINI İYİLEŞTİRİR

Yıl 2023, Cilt: 13 Sayı: 2, 210 - 216, 30.06.2023
https://doi.org/10.31832/smj.1246705

Öz

Amaç: Mevcut çalışmanın amacı, borik asidin sıçanlarda siklofosfamidin (CTX) neden olduğu karaciğer hasarı üzerindeki olası iyileştirici etkilerini araştırmaktır.
Yöntem ve Gereçler: Çalışmada dört grup oluşturuldu; kontrol, borik asit, CTX ve borik asit+CTX. Karaciğer hasarı modelini oluşturmak için Wistar albino cinsi dişi ratlara günlük 75 mg/kg CTX intraperitoneal (i.p.) olarak verildi. Borik asit+CTX grubuna 75 mg/kg CTX (i.p.) ve 1,3 g/rat/gün boron gavaj ile iki hafta boyunca her gün verildi. Over dokusundaki histopatolojik değişiklikler hematoksilen ve eozin, masson trikrom ve periyodik asit-Schiff boyamaları ile değerlendirildi. Over dokusunda malondialdehit (MDA), süperoksit dismutaz (SOD), katalaz (CAT) ve glutatyon peroksidaz (GSH-Px) enzim aktiviteleri belirlendi.
Bulgular: Işık mikroskobunda borik asit+CTX grubundaki histolojik değişikliklerin CTX grubuna göre daha düşük olduğu belirlendi. Bulgulara göre borik asit, karaciğer dokularındaki MDA seviyesini azalttığı gözlendi. Buna ek olarak, borik asit, CTX'in neden olduğu oksidatif stresi azaltmak için oksidatif stres belirteçlerinin etkilerini iyileştirdiği ve antioksidan parametrelerini artırdığı belirlendi.
Sonuç: Sonuç olarak, çalışmamız, CTX'in neden olduğu karaciğer hasarının, doku MDA seviyelerinin düşürülmesi, karaciğerin SOD, GSH-Px ve CAT aktivitelerinin arttırılması ile hafifletilebileceğini göstermiştir. CTX'in neden olduğu karaciğer hasarını azaltmak için borik asit, diyet takviyesi veya fonksiyonel gıda olarak verilebilir.

Kaynakça

  • Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK547852/
  • Hasanah YIF, Harahap Y, Purwanto DJ. Phenotyping study of cyclophosphamide 4-hydroxylation in malay cancer patients. Drug Des Devel Ther 2021; 15: 305–313.
  • Caglayan C, Temel Y, Kandemir FM, Yildirim S, Kucukler S. Naringin protects against cyclophosphamide-induced hepatotoxicity and nephrotoxicity through modulation of oxidative stress, inflammation, apoptosis, autophagy, and DNA damage. Environ Sci Pollu Res 2018; 25(21): 20968–20984.
  • Caglayan C. The effects of naringin on different cyclophos- phamide-induced organ toxicities in rats: investigation of changes in some metabolic enzyme activities. Environ Sci Pollut Res 2019; 26(26): 26664–26673.
  • Ghareeb MA, Sobeh M, El-Maadawy WH, Mohammed HS, Khalil H, et al. Chemical profiling of polyphenolics in eucalyptus globulus and evaluation of its hepato-renal protective potential against cyclophosphamide induced toxicity in mice. Antioxidants 2019; 8(9): 415.
  • Hamzeh M, Hosseinimehr SJ, Khalatbary AR, Mohammadi HR, Dashti A, Amiri FT. Atorvastatin mitigates cyclophosphamide-induced hepatotoxicity via suppression of oxidative stress and apoptosis in rat model. Res Pharm Sci. 2018;13(5): 440-449.
  • Cruz-Valencia R, Arvizu-Flores AA, Rosas-Rodríguez JA, Valen- zuela-Soto EM. Effect of the drug cyclophosphamide on the activity of porcine kidney betaine aldehyde dehydrogenase.Mol Cell Biochemi 2021; 476(3): 1467–1475.
  • Adikwu E, Bokolo B. Effect of cimetidine on cyclophosphamide-induced liver toxicity in albino rats. Asia J Medical Sci 2018; 9(5): 50–56.
  • Wang X, Martínez MA, Cheng G, Liu Z, Huang L, Dai M, et al. The critical role of oxidative stress in the toxicity and metabolism of quinoxaline 1,4-di-N-oxides in vitro and in vivo. Drug Metab Rev 2016; 48(2): 159-182.
  • Devirian TA, Volpe SL. The physiological effects of dietary boron. Crit Rev Food Sci Nutr. 2003; 43(2): 219– 231.
  • Khaliq H, Juming Z, Ke-Mei P. The physiological role of boron on health. Biol Trace Elem Res. 2018; 186(1): 31–51.
  • Abdelnour SA, Abd El-Hack ME, Swelum AA, Perillo A, Losacco C. The vital roles of boron in animal health and production: a comprehensive review. J Trace Elem Med Biol 2018; 50: 296–304.
  • Türkez H, Geyikoǧlu F, Tatar A, Keleş S, Özkan A. Effects of some boron compounds on peripheral human blood. Zeitschrift für Naturforsch C 2007; 62: 889–896.
  • Nair DV, Rani MU, Reddy AG, Kumar BK, Reddy MA, Lakshman M, et al. Protective effect of alpha-lipoic acid and omega-3 fatty acids against cyclophosohamide-induced ovarian toxicity in rats. Vet world 2020; 13: 188-196.
  • Yeral I, Dayangan Sayan C. Magnesium Sulfate Has Potential Scavenging Effects on Cyclophosphamide-Induced Ovarian Damage in. A Rat Model. JCOG 2019; 29(1): 24-30.
  • Çolak S, Koç K, Yıldırım S, Geyikoğlu F. Effects of boric acid on ovarian tissue damage caused by experimental ischemia/reperfusion. Biotechnic & Histochemistry. 2022; 97(6): 415-422.
  • Karimkhani H, Özkoç M, Shojaolsadati P, Uzuner K, Burukoglu Donmez D, Kanbak G. Protective Effect of Boric Acid and Omega-3 on Myocardial Infarction in an Experimental Rat Model. Biological Trace Element Research 2021; 199: 2612–2620.
  • Shirani K, Yousefsani BS, Shirani M, Karimi G. Protective effects of naringin against drugs and chemical toxins induced hepatotoxicity: a review. Phytother Res 2020; 34(8): 1734–1744.
  • Bhattacharya T, Maishu SP, Akter R, Rahman MH, Akhtar MF, Saleem A, et al. A review on natural sources derived protein nanoparticles as anticancer agents. Curr Top Med Chem 2021; 21(12): 1014–1026.
  • Iqubal A, Iqubal MK, Sharma S, Ansari MA, Najmi AK, Ali SM, et al. Molecular mechanism involved in cyclophos- phamide-induced cardiotoxicity: Old drug with a new vision. Life Sci 2019; 218: 112–131.
  • Zhai J, Zhang F, Gao S, Chen L, Feng G, Yin J, et al. Schisan- dra chinensis extract decreases chloroacetaldehyde production in rats and attenuates cyclophosphamide toxicity in liver, kidney and brain. J Ethnopharmacol 2018; 210: 223–231.
  • Ince S, Kucukkurt HH, Demirel DA, Acaroz E, Akbel IH, Cigerci İH. Protective effects of boron on cyclophosphamide induced lipid peroxidation and genotoxicity in rats, Chemosphere 2014; 108: 197–204.
  • Sogut I, Paltun SO, Tuncdemir M, Ersöz M, Hurdag C (2018) The antioxidant and antiapoptotic effect of boric acid on hepatoxicity in chronic alcohol-fed rats. Can J Physiol Pharmacol 96(4): 404–411. https://doi.org/10.1139/cjpp-2017-0487.
  • Kyle ME, Miccadei S, Nakae D, Farber JL (1987) Superoxide dismutase and catalase protect cultured hepatocytes from the cytotoxicity of acetominophen. Biochem Biophys Res Commun 149: 889–896. https://doi.org/10.1016/0006-291X(87)90491-8
  • Baran M, Yay A, Onder GO, Canturk Tan F, Yalcin B, Balcioglu E et al (2022) Hepatotoxicity and renal toxicity induced by radiation and the protective effect of quercetin in male albino rats, International Journal of Radiation Biology, 98:9, 1473-1483, DOI: 10.1080/09553002.2022.2033339
  • Cengiz M. Boric acid protects against cyclophosphamide-induced oxidative stress and renal damage in rats, Cell Mol Biol 2018; 64(12): 11–14.
  • Sogut I, Paltun SO, Tuncdemir M, Ersoz M, Hurdag C. The antioxidant and antiapoptotic effect of boric acid on hepatoxicity in chronic alcohol-fed rats, Can J Physiol Pharmacol 2018; 96(4): 404–411.
  • Ince S, Keles H, Erdogan M, Hazman O, Kucukkurt I, Protective effect of boric acid against carbon tetrachloride-induced hepatotoxicity in mice, Drug Chem. Toxicol. 2012; 35(3): 285–292.
  • Wang J, Li M, Zhang W, Gu A, Dong J, Li J, et al. Protective effect of n-acetylcysteine against oxidative stress induced by zearalenone via mitochondrial apoptosis pathway in SIEC02 cells. Toxins 2018; 10(10): 407.
  • Kuang H, Jiao Y, Wang W, Wang F, Chen Q. Characterization and antioxidant activities of intracellular polysaccharides from Agaricus bitorquis (QuéL.) Sacc. Chaidam ZJU-CDMA-12. Int J Biol Macromol 2020; 156: 1112–1125.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Makaleler
Yazarlar

Gözde Özge Önder 0000-0002-0515-9286

Özge Göktepe 0000-0002-8205-2132

Eda Okur 0000-0002-0502-7814

Özge Cengiz Mat 0000-0003-4638-6116

Demet Bolat 0000-0002-3496-1630

Esra Balcıoğlu 0000-0003-1474-0432

Arzu Yay 0000-0002-0541-8372

Erken Görünüm Tarihi 27 Haziran 2023
Yayımlanma Tarihi 30 Haziran 2023
Gönderilme Tarihi 3 Şubat 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 13 Sayı: 2

Kaynak Göster

AMA Önder GÖ, Göktepe Ö, Okur E, Cengiz Mat Ö, Bolat D, Balcıoğlu E, Yay A. BORIC ACID AMELIORATES LIVER INJURY IN RAT INDUCED BY CYCLOPHOSPHAMIDE. Sakarya Tıp Dergisi. Haziran 2023;13(2):210-216. doi:10.31832/smj.1246705

30703

SMJ'de yayınlanan makaleler, Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı kapsamında lisanslanır