Araştırma Makalesi
BibTex RIS Kaynak Göster

Dynamıc Analysıs Of Layered Composıte Beams Wıth Symmetrıc And Dıfferent Orıentatıon Angles

Yıl 2020, , 24 - 34, 31.12.2020
https://doi.org/10.47118/somatbd.825928

Öz

In this study, the dynamic analysis of two-layer composite beams with symmetrıc and dıfferent orıentatıon angles was analyzed analytically and numerically. In the first part, the analytical solution of the layered beam with real dimensions has been made using the finite element method. In the analytical solution, the beam is accepted based on the Euler-Bernoulli beam theory. In the second part, Natural frequencies of two-layered which have various boundary conditions layered beams were obtained at different angles and length-thickness ratios using the MATLAB program language, which is a mathematical analysis program. Large amplitude vibrations are quite effective in laminated composite beams. For this reason, the frequencies were tabulated and interpreted for the first eight modes.

Kaynakça

  • Abreu, G.L.C.M.; Riberio, J.F.; Steffen, V. 2004, “Finite element modeling of a plate with localized piezoelectric sensors and actuators”, Journal of the Braz. Soc. Of Mech. Sci, vol. 26 (2), pp. 117- 128.
  • Alimirzaei S., Mohammadimehr M., Abdelouahed T. 2020, “Nonlinear analysis of viscoelastic micro- composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions”, Structural Engineering and Mechanics, Vol. 71, No. 5 (2019) 485-502.
  • Atilla G., Caglioglu H., 2011, “Vibration analysis of delaminated composite beams using analytical and FEM models”, Indian Journal of Engineering & Material Sciences, Volume 18, Pages 7-14.
  • Atilla O., Emrah M. 2012, “Free vıbratıon analysıs of cross-ply lamınated composıte beams by mıxed fınıte element”, formulatıon ınternational journal of structural stability and Dynamics, Volume 12, No 6, pages 17, DOI: 10.1142/s0219455412500563.
  • Balci, M., Nalbant, M.O., Kara, E., & Gundogdu, O. 2014, “Free Vibration Analysis of a Laminated Composite Beam with Various Boundary Conditions”, International Journal of Automotive and Mechanical Engineering, 9, 1734-1746.
  • D.D.L. Chung, 2018, “Thermoelectric polymer-matrix structural and nonstructural composite materials”, Advanced Industrial and Engineering Polymer Research, Volume 1, Issue 1, Pages 61-65.
  • Farzad E., Ali D. 2018, “On thermo-mechanical vibration analysis of multi-scale hybrid composite beams”, Journal of Vibration and Control, Vol 25, Issue 4, page(s): 933-945, https://doi.org/10.1177/1077546318806800.
  • Gökmen A., Hasan Ç., E. Sahin C., Muzaffer T., Ugur Y. 2008, “Free Vibration Analysis of the Laminated Composite Beams by Using DQM”, Journal of Reinforced Plastics and Composites DOI: 10.1177/0731684407087561.
  • Guigen Z., Helen L., Sachin M., Min W. 2020, “Composites”, Biomaterials Science (Fourth Edition), Academic Press, Pages 415-429, ISBN 9780128161371.
  • Jones, R., M., 1975, “Mechanics of Composite Materials”, Newyork, Hemisphere.
  • K.M.A. Hossain, S. Hasib, T. Manzur, 2020, “Shear behavior of novel hybrid composite beams made of self-consolidating concrete and engineered cementitious composites”, Eng. Structures, Volume 202.
  • Kollar, L.P.; Springer, G.S. 2003, “Mechanics of Composite Structures”, Cambridge University, 480, New York.
  • Lurie K.A., Cherkaev A.V. 2018, "Effective Characteristics of Composite Materials and the Optimal Design of Structural Elements. In: Cherkaev A.V., Kohn R. (eds) Topics in the Mathematical Modelling of Composite Materials. Modern Birkhäuser Classics. Birkhäuser, Cham.
  • Petyt, M. 1990, “Introduction to Finite Element Vibration Analysis”, Cambridge University, 558, New York.
  • Reddy, J., N., Wang, C., M., Lee, K., H., 1997, “Relationships Between Bending Solutions of Classical and Shear Deformation Beam Theories”, International Journal of Solids and Structures, Vol. 34, 26, 3373-3384.
  • S.S. Bhavikatti, 2007 “Finite Element Analysis”, New age international Publishers.
  • Wang, C.M., Reddy, J.N., Lee, K.M. 2000. “Shear deformable beams and plates relations with classical solutions”, Elsevier, 296, Oxford.

SİMETRİK VE FARKLI ORYANTASYON AÇILARINA SAHİP TABAKALI KOMPOZİT KİRİŞLERİN DİNAMİK ANALİZİ

Yıl 2020, , 24 - 34, 31.12.2020
https://doi.org/10.47118/somatbd.825928

Öz

Bu çalışmada, simetrik ve farklı oryantasyon açılarına sahip iki tabakalı kompozit kirişlerin dinamik analizi numerik olarak incelenmiştir. İlk kısımda gerçek boyutlara sahip tabakalı kirişin sonlu elemanlar metodu ile analitik çözümü yapılmıştır. Analitik çözümde kiriş Euler-Bernoulli kiriş teorisi kirişi kabul edilmiştir. İkinci kısımda ise sistem sönümsüz serbest titreşime maruz bırakılarak dinamik analizi yapılmıştır. Sistemin numerik analizi için matematik analiz programı olan MATLAB program dili kullanılmıştır. İki tabakalı çeşitli sınır şartlarına sahip kirişlerin; farklı açılarda ve uzunluk-kalınlık oranlarında doğal frekansları elde edilmiştir. Tabakalı kompozit kirişlerde büyük genlikli titreşimler oldukça etkilidir. Bu sebeple frekanslar ilk sekiz mod için tablo haline getirilip yorumlanmıştır.

Kaynakça

  • Abreu, G.L.C.M.; Riberio, J.F.; Steffen, V. 2004, “Finite element modeling of a plate with localized piezoelectric sensors and actuators”, Journal of the Braz. Soc. Of Mech. Sci, vol. 26 (2), pp. 117- 128.
  • Alimirzaei S., Mohammadimehr M., Abdelouahed T. 2020, “Nonlinear analysis of viscoelastic micro- composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions”, Structural Engineering and Mechanics, Vol. 71, No. 5 (2019) 485-502.
  • Atilla G., Caglioglu H., 2011, “Vibration analysis of delaminated composite beams using analytical and FEM models”, Indian Journal of Engineering & Material Sciences, Volume 18, Pages 7-14.
  • Atilla O., Emrah M. 2012, “Free vıbratıon analysıs of cross-ply lamınated composıte beams by mıxed fınıte element”, formulatıon ınternational journal of structural stability and Dynamics, Volume 12, No 6, pages 17, DOI: 10.1142/s0219455412500563.
  • Balci, M., Nalbant, M.O., Kara, E., & Gundogdu, O. 2014, “Free Vibration Analysis of a Laminated Composite Beam with Various Boundary Conditions”, International Journal of Automotive and Mechanical Engineering, 9, 1734-1746.
  • D.D.L. Chung, 2018, “Thermoelectric polymer-matrix structural and nonstructural composite materials”, Advanced Industrial and Engineering Polymer Research, Volume 1, Issue 1, Pages 61-65.
  • Farzad E., Ali D. 2018, “On thermo-mechanical vibration analysis of multi-scale hybrid composite beams”, Journal of Vibration and Control, Vol 25, Issue 4, page(s): 933-945, https://doi.org/10.1177/1077546318806800.
  • Gökmen A., Hasan Ç., E. Sahin C., Muzaffer T., Ugur Y. 2008, “Free Vibration Analysis of the Laminated Composite Beams by Using DQM”, Journal of Reinforced Plastics and Composites DOI: 10.1177/0731684407087561.
  • Guigen Z., Helen L., Sachin M., Min W. 2020, “Composites”, Biomaterials Science (Fourth Edition), Academic Press, Pages 415-429, ISBN 9780128161371.
  • Jones, R., M., 1975, “Mechanics of Composite Materials”, Newyork, Hemisphere.
  • K.M.A. Hossain, S. Hasib, T. Manzur, 2020, “Shear behavior of novel hybrid composite beams made of self-consolidating concrete and engineered cementitious composites”, Eng. Structures, Volume 202.
  • Kollar, L.P.; Springer, G.S. 2003, “Mechanics of Composite Structures”, Cambridge University, 480, New York.
  • Lurie K.A., Cherkaev A.V. 2018, "Effective Characteristics of Composite Materials and the Optimal Design of Structural Elements. In: Cherkaev A.V., Kohn R. (eds) Topics in the Mathematical Modelling of Composite Materials. Modern Birkhäuser Classics. Birkhäuser, Cham.
  • Petyt, M. 1990, “Introduction to Finite Element Vibration Analysis”, Cambridge University, 558, New York.
  • Reddy, J., N., Wang, C., M., Lee, K., H., 1997, “Relationships Between Bending Solutions of Classical and Shear Deformation Beam Theories”, International Journal of Solids and Structures, Vol. 34, 26, 3373-3384.
  • S.S. Bhavikatti, 2007 “Finite Element Analysis”, New age international Publishers.
  • Wang, C.M., Reddy, J.N., Lee, K.M. 2000. “Shear deformable beams and plates relations with classical solutions”, Elsevier, 296, Oxford.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm 30. Sayı Cilt I [tr] Issue 30, Volume I [en]
Yazarlar

Mustafa Oğuz Nalbant

Ayla Tekin

Yayımlanma Tarihi 31 Aralık 2020
Gönderilme Tarihi 14 Kasım 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Nalbant, M. O., & Tekin, A. (2020). SİMETRİK VE FARKLI ORYANTASYON AÇILARINA SAHİP TABAKALI KOMPOZİT KİRİŞLERİN DİNAMİK ANALİZİ. Soma Meslek Yüksekokulu Teknik Bilimler Dergisi, I(30), 24-34. https://doi.org/10.47118/somatbd.825928
AMA Nalbant MO, Tekin A. SİMETRİK VE FARKLI ORYANTASYON AÇILARINA SAHİP TABAKALI KOMPOZİT KİRİŞLERİN DİNAMİK ANALİZİ. Soma MYO Teknik Bilimler Dergisi. Aralık 2020;I(30):24-34. doi:10.47118/somatbd.825928
Chicago Nalbant, Mustafa Oğuz, ve Ayla Tekin. “SİMETRİK VE FARKLI ORYANTASYON AÇILARINA SAHİP TABAKALI KOMPOZİT KİRİŞLERİN DİNAMİK ANALİZİ”. Soma Meslek Yüksekokulu Teknik Bilimler Dergisi I, sy. 30 (Aralık 2020): 24-34. https://doi.org/10.47118/somatbd.825928.
EndNote Nalbant MO, Tekin A (01 Aralık 2020) SİMETRİK VE FARKLI ORYANTASYON AÇILARINA SAHİP TABAKALI KOMPOZİT KİRİŞLERİN DİNAMİK ANALİZİ. Soma Meslek Yüksekokulu Teknik Bilimler Dergisi I 30 24–34.
IEEE M. O. Nalbant ve A. Tekin, “SİMETRİK VE FARKLI ORYANTASYON AÇILARINA SAHİP TABAKALI KOMPOZİT KİRİŞLERİN DİNAMİK ANALİZİ”, Soma MYO Teknik Bilimler Dergisi, c. I, sy. 30, ss. 24–34, 2020, doi: 10.47118/somatbd.825928.
ISNAD Nalbant, Mustafa Oğuz - Tekin, Ayla. “SİMETRİK VE FARKLI ORYANTASYON AÇILARINA SAHİP TABAKALI KOMPOZİT KİRİŞLERİN DİNAMİK ANALİZİ”. Soma Meslek Yüksekokulu Teknik Bilimler Dergisi I/30 (Aralık 2020), 24-34. https://doi.org/10.47118/somatbd.825928.
JAMA Nalbant MO, Tekin A. SİMETRİK VE FARKLI ORYANTASYON AÇILARINA SAHİP TABAKALI KOMPOZİT KİRİŞLERİN DİNAMİK ANALİZİ. Soma MYO Teknik Bilimler Dergisi. 2020;I:24–34.
MLA Nalbant, Mustafa Oğuz ve Ayla Tekin. “SİMETRİK VE FARKLI ORYANTASYON AÇILARINA SAHİP TABAKALI KOMPOZİT KİRİŞLERİN DİNAMİK ANALİZİ”. Soma Meslek Yüksekokulu Teknik Bilimler Dergisi, c. I, sy. 30, 2020, ss. 24-34, doi:10.47118/somatbd.825928.
Vancouver Nalbant MO, Tekin A. SİMETRİK VE FARKLI ORYANTASYON AÇILARINA SAHİP TABAKALI KOMPOZİT KİRİŞLERİN DİNAMİK ANALİZİ. Soma MYO Teknik Bilimler Dergisi. 2020;I(30):24-3.