Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluating Large Language Models in Translation: A Theoretical and Practical Analysis Based on Skopos Theory

Yıl 2025, Sayı: Çeviribilim Özel Sayısı II, 819 - 826, 25.03.2025
https://doi.org/10.29110/soylemdergi.1602093

Öz

The aim of this study is to analyse the translation abilities of large language models, such as GPT-4, through various theoretical lenses within translation studies. This study is unique in its comprehensive evaluation of these models' translation performance based on skopos theory. This research assesses how well large language models align with these theoretical frameworks and their effectiveness in producing contextually appropriate and culturally sensitive translations. The research explores the architecture and operational principles of large language models, explaining their application in translation. Methodologically, the study employs a comparative analysis of translations generated by large language models across language pairs amongst Turkish, English and Spanish. The analysis focuses on key theoretical aspects, such as the purpose and functionality of translations. Additionally, the study examines the cultural and contextual appropriateness of translations generated by large language models, evaluating their ability to maintain cultural nuances and meet the expectations set by the respective translation theories. The findings reveal the strengths and limitations of large language models in adhering to theoretical principles, providing insights into their potential to enhance or challenge traditional translation practices. This research advances the theoretical understanding of machine translation and offers practical recommendations for improving the translation capabilities of large language models. By integrating theoretical analysis with practical applications, the study aims to provide insight into future developments in translation technologies and their role in the future of translation studies.

Kaynakça

  • Aharoni, Roee, Johnson, Melvin, & Firat, Orhan. (2019). Massively multilingual neural machine translation.
  • Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 3874–3884.
  • Bender, Emily M., Gebru, Timnit, McMillan-Major, Angelina, & Shmitchell, Shmargaret. (2021). On the dangers of stochastic parrots: Can language models be too big? 🦜. Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, 610–623.
  • Fan, Angela, Bhosale, Shruti, Schwenk, Holger, Ma, Xiaoqing, El-Kishky, Ahmed, Goyal, Naman, ... & Edunov, Sergey. (2021). Beyond English-centric multilingual machine translation. Journal of Machine Learning Research, 22(107), 1–48.
  • Jiménez-Crespo, Miguel Ángel (2017). Crowdsourcing and Online Collaborative Translations: Expanding the Limits of Translation Studies. John Benjamins Publishing.
  • Kocmi, Tom, & Federmann, Christian (2023). Large language models are state-of-the-art evaluators of translation quality.
  • Koehn, Philipp (2020). Neural Machine Translation. Cambridge University Press.
  • Koehn, Philipp, & Knowles, Rebecca. (2017). Six challenges for neural machine translation. Proceedings of the First Workshop on Neural Machine Translation, 28–39.

Çeviride Büyük Dil Modellerini Araştırmak: Skopos Teorisine Dayalı Kuramsal ve Uygulamaya Dayalı Bir Analiz

Yıl 2025, Sayı: Çeviribilim Özel Sayısı II, 819 - 826, 25.03.2025
https://doi.org/10.29110/soylemdergi.1602093

Öz

Bu çalışmanın amacı, GPT-4 gibi büyük dil modellerinin çeviri edinçlerini çeviribilim alanındaki kuramlar aracılığıyla incelemektir. Bu çalışma, büyük dil modellerinin çeviri edimlerini skopos teorisine dayalı kapsamlı bir değerlendirme yapması bakımından özgündür. Bu araştırma, büyük dil modellerinin bu teorik çerçevelerle ne kadar iyi uyum sağladığını ve bağlamsal olarak uygun ve kültürel olarak hassas çeviriler üretmedeki başarısını değerlendirir. Araştırma, büyük dil modellerinin mimarisini ve işleyiş ilkelerini inceleyerek çeviride uygulamalarını açıklar. Yöntemde, çalışma Türkçe, İngilizce ve İspanyolca arasında dil çiftleri arasında büyük dil modelleri tarafından üretilen çevirilerin karşılaştırmalı analizini kullanır. Analiz, çevirilerin amacı ve işlevselliği gibi temel kuramsal yönlere odaklanır. Ayrıca, çalışma büyük dil modelleri tarafından üretilen çevirilerin kültürel ve bağlamsal uygunluğunu inceler, kültürel nüansları koruma ve ilgili çeviri teorilerinin koyduğu beklentileri karşılama edinçlerini değerlendirir. Bulgular, büyük dil modellerinin teorik ilkelere bağlı kalmadaki güçlü ve zayıf yönlerini ortaya koyarak geleneksel çeviri uygulamalarını geliştirme veya bunları değiştirme konularını tartışır. Bu araştırma yalnızca makine çevirisinin kuramsal kısmına katkı sağlamakla kalmıyor, aynı zamanda büyük dil modellerinin çeviri edinçlerini geliştirmek için öneriler de sunuyor. Kuram ve uygulamayı bütünleştirerek, çeviri teknolojilerindeki gelecekteki gelişmelere ve çeviribilimin geleceğindeki rollerine ilişkin tartışma alanı açmayı amaçlıyor.

Kaynakça

  • Aharoni, Roee, Johnson, Melvin, & Firat, Orhan. (2019). Massively multilingual neural machine translation.
  • Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 3874–3884.
  • Bender, Emily M., Gebru, Timnit, McMillan-Major, Angelina, & Shmitchell, Shmargaret. (2021). On the dangers of stochastic parrots: Can language models be too big? 🦜. Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, 610–623.
  • Fan, Angela, Bhosale, Shruti, Schwenk, Holger, Ma, Xiaoqing, El-Kishky, Ahmed, Goyal, Naman, ... & Edunov, Sergey. (2021). Beyond English-centric multilingual machine translation. Journal of Machine Learning Research, 22(107), 1–48.
  • Jiménez-Crespo, Miguel Ángel (2017). Crowdsourcing and Online Collaborative Translations: Expanding the Limits of Translation Studies. John Benjamins Publishing.
  • Kocmi, Tom, & Federmann, Christian (2023). Large language models are state-of-the-art evaluators of translation quality.
  • Koehn, Philipp (2020). Neural Machine Translation. Cambridge University Press.
  • Koehn, Philipp, & Knowles, Rebecca. (2017). Six challenges for neural machine translation. Proceedings of the First Workshop on Neural Machine Translation, 28–39.
Toplam 8 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çeviri ve Yorum Çalışmaları
Bölüm ARAŞTIRMA MAKALELERİ
Yazarlar

Dilara Bal 0000-0002-3934-0681

Şaban Köktürk 0000-0002-2575-0137

Erken Görünüm Tarihi 23 Mart 2025
Yayımlanma Tarihi 25 Mart 2025
Gönderilme Tarihi 15 Aralık 2024
Kabul Tarihi 13 Mart 2025
Yayımlandığı Sayı Yıl 2025 Sayı: Çeviribilim Özel Sayısı II

Kaynak Göster

APA Bal, D., & Köktürk, Ş. (2025). Evaluating Large Language Models in Translation: A Theoretical and Practical Analysis Based on Skopos Theory. Söylem Filoloji Dergisi(Çeviribilim Özel Sayısı II), 819-826. https://doi.org/10.29110/soylemdergi.1602093