Araştırma Makalesi
BibTex RIS Kaynak Göster

Sürdürülebilir Yapı Üretiminde Yaşam Döngüsü Değerlendirme (LCA) Hesaplamalarının Yapı Bilgi Modellemesi (BIM) İle Entegrasyonuna Yönelik Bir Araştırma

Yıl 2021, Cilt: 2 Sayı: 3, 107 - 121, 29.12.2021

Öz

Yaşam döngüsü değerlendirmesi (LCA-life cycle assessment) hammaddelerin çıkarılması, işlenmesi, yapı bileşenlerinin üretimi, yapıların kullanımı ve kullanım ömrü sonuna kadar yapıların bütün yaşam döngüsünü kapsayan bir çevresel etki tahmin yöntemidir. Yapı sektöründe LCA hesaplaması oldukça fazla bilgi gerektirmesi ve mevcut olan yöntemlerin zaman alıcı metodolojisi nedeniyle karmaşık bir yapıya sahiptir. Özellikle yapı malzemelerinin metraj listelerinin oluşturulması ve LCA hesaplamasının esas alındığı veri tabanından doğru veri kümelerinin bulunması çok büyük zaman ve çaba ihtiyacına neden olmaktadır. Günümüzde dünya çapında büyük ilgi gören, devamlı gelişen bir teknoloji olan Yapı Bilgi Modellemesine (BIM-Building Information Modelling) dayalı dijital araçlar, LCA hesaplamaları için gerekli olan çabayı azaltma ve süreci oldukça hızlandırma potansiyeli taşımaktadır. Kapsamlı literatür analizi yöntemine dayanan bu çalışmanın amacı; geleneksel olarak elle yapılan yoğun LCA analizleri hesaplaması yerine, LCA sürecini basitleştiren, girdi verilerinin azaltılmasına yardımcı olan ve sınırlı bilgi düzeyine sahip tasarımcılar için sonuçların yorumlanmasını kolaylaştıran bir entegrasyona yönelik, uluslararası literatürde yayımlanan kuramsal yaklaşımları, kapsamlı olarak analiz etmektir.

Kaynakça

  • AIA. (2013). Guide, Instructions, and Commentary to the 2013 AIA Digital Practice Documents. Retrieved from https://www.aiacontracts.org/resources/69541-guide-instructions-and-commentary-to-the-2013-aia-digital-practice-documents (Erişim Tarihi: 11.06.2021)
  • Bruce-Hyrkäs, T. (2021). Building Life Cycle Assessment White Paper-Discover why you need LCA to build sustainably. Retrieved from https://www.oneclicklca.com/building-life-cycle-assessment-white-paper/ (Erişim Tarihi: 15.03.2021)
  • Bueno, C., Pereira, L. M., & Fabricio, M. M. (2018). Life cycle assessment and environmental-based choices at the early design stages: an application using building information modelling. Architectural Engineering and Design Management, 14(5), 332-346. doi:10.1080/17452007.2018.1458593
  • Buildipedia. (2021). BIM and Sustainable Design. Retrieved from http://buildipedia.com/aec-pros/design-news/bim-and-sustainable-design (Erişim Tarihi: 10.06.2021)
  • Cavalliere, C., Habert, G., Dell'Osso, G. R., & Hollberg, A. (2019). Continuous BIM-based assessment of embodied environmental impacts throughout the design process. Journal of Cleaner Production, 211, 941-952. doi:https://doi.org/10.1016/j.jclepro.2018.11.247
  • EeBGuideProject. (2012). Operational Guidance for Life Cycle Assessment Studies of the Energy Efficient Buildings Initiative. Retrieved from https://www.eebguide.eu/ (Erişim Tarihi: 09.06.2021)
  • GreenSpec. (2021). Life Cycle Assessment Retrieved from https://www.greenspec.co.uk/life-cycle-assessment-lca/ (Erişim Tarihi: 10.06.2021)
  • Hollberg, A., & Ruth, J. (2016). LCA in architectural design—a parametric approach. The International Journal of Life Cycle Assessment, 21. doi:10.1007/s11367-016-1065-1
  • Jalaei, F., Jalaei, F., & Mohammadi, S. (2020). An integrated BIM-LEED application to automate sustainable design assessment framework at the conceptual stage of building projects. Sustainable Cities and Society, 53, 101979. doi:https://doi.org/10.1016/j.scs.2019.101979
  • Kiamili, C., Hollberg, A., & Habert, G. (2020). Detailed Assessment of Embodied Carbon of HVAC Systems for a New Office Building Based on BIM. Sustainability, 12, 3372. doi:10.3390/su12083372
  • Lobaccaro, G., Wiberg, A. H., Ceci, G., Manni, M., Lolli, N., & Berardi, U. (2018). Parametric design to minimize the embodied GHG emissions in a ZEB. Energy and Buildings, 167, 106-123. doi:https://doi.org/10.1016/j.enbuild.2018.02.025
  • Meex, E., Hollberg, A., Knapen, E., Hildebrand, L., & Verbeeck, G. (2018). Requirements for applying LCA-based environmental impact assessment tools in the early stages of building design. Building and Environment, 133, 228-236. doi:https://doi.org/10.1016/j.buildenv.2018.02.016
  • Monteiro, A. (2016). Visual Programming Language For Creating BIM Models With Level Of Development 400. Paper presented at the 4th BIM International Conference, São Paulo & Lisboa. https://www.researchgate.net/publication/310606700_VISUAL_PROGRAMMING_LANGUAGE_FOR_CREATING_BIM_MODELS_WITH_LEVEL_OF_DEVELOPMENT_400/citations
  • Pan, W., & Teng, Y. (2021). A systematic investigation into the methodological variables of embodied carbon assessment of buildings. Renewable and Sustainable Energy Reviews, 141, 110840. doi:https://doi.org/10.1016/j.rser.2021.110840
  • Parametricmonkey. (2021). Retrieved from https://parametricmonkey.com/2016/01/19/dynamo-for-grasshopper-users/ (Erişim Tarihi: 14.06.2021)
  • Potrč Obrecht, T., Röck, M., Hoxha, E., & Passer, A. (2020). BIM and LCA Integration: A Systematic Literature Review. Sustainability, 12(14). doi:10.3390/su12145534
  • Reizgevicius, M., Ustinovičius, L., Cibulskiene, D., Kutut, V., & Nazarko, L. (2018). Promoting Sustainability through Investment in Building Information Modeling (BIM) Technologies: A Design Company Perspective. Sustainability, 10, 600. doi:10.3390/su10030600
  • Rezaei, F., Bulle, C., & Lesage, P. (2019). Integrating building information modeling and life cycle assessment in the early and detailed building design stages. Building and Environment, 153, 158-167. doi:https://doi.org/10.1016/j.buildenv.2019.01.034
  • Safari, K., & AzariJafari, H. (2021). Challenges and opportunities for integrating BIM and LCA: Methodological choices and framework development. Sustainable Cities and Society, 67, 102728. doi:https://doi.org/10.1016/j.scs.2021.102728
  • Soust-Verdaguer, B., Llatas, C., & García-Martínez, A. (2017). Critical review of bim-based LCA method to buildings. Energy and Buildings, 136, 110-120. doi:https://doi.org/10.1016/j.enbuild.2016.12.009
  • Su, S., Wang, Q., Han, L., Hong, J., & Liu, Z. (2020). BIM-DLCA: An integrated dynamic environmental impact assessment model for buildings. Building and Environment, 183, 107218. doi:https://doi.org/10.1016/j.buildenv.2020.107218
  • UNEP. (2020). 2020 Global Status Report For Buıldings And Construction: Towards a zero-emissions, efficient and resilient buildings and construction sector. Retrieved from https://globalabc.org/sites/default/files/inline-files/2020%20Buildings%20GSR_FULL%20REPORT.pdf (Erişim Tarihi: 11.06.2021)
  • Volk, R., Stengel, J., & Schultmann, F. (2014). Building Information Modeling (BIM) for existing buildings Literature review and future needs. Automation in Construction, 38, 109-127.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makaleleri
Yazarlar

Mehmet Oğuz Duru 0000-0002-0583-0439

İlhan Koç 0000-0002-4864-6906

Yayımlanma Tarihi 29 Aralık 2021
Gönderilme Tarihi 16 Ekim 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 2 Sayı: 3

Kaynak Göster

APA Duru, M. O., & Koç, İ. (2021). Sürdürülebilir Yapı Üretiminde Yaşam Döngüsü Değerlendirme (LCA) Hesaplamalarının Yapı Bilgi Modellemesi (BIM) İle Entegrasyonuna Yönelik Bir Araştırma. STAR Sanat Ve Tasarım Araştırmaları Dergisi, 2(3), 107-121.