Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı Biyokütlelerden Aktif Karbon Sentezi

Yıl 2023, Cilt: 3 Sayı: 2, 24 - 33, 24.05.2023

Öz

Aktif karbonlar, enerji depolama sektöründen su ve hava temizleme sistemlerine kadar pek çok önemli alanda, geniş kullanım alanına sahiptirler. Bu çalışmada, aktif karbonların, patlıcan (Solanum melongena) sapı, Muz (Musa sapientum) ve Portakal (Citrus sinensis) kabukları olmak üzere 3 farklı biyokütleden sentezlenebilirliği araştırılmıştır. Sentez için 2 saat boyunca 1200 °C'de karbonizasyonu gerçekleştirilen biyokütleler, 24 saat süreyle 4N Sülfürik asit (H2SO4) ile aktive edilmiştir. Son olarak, elde edilen bu aktif karbonlar Endonezya Ulusal Standart ölçümü sistemi olan SNI 06-3730-1995.5'e (maksimum su içeriği %15, maksimum kül içeriği %10, maksimum buhar içeriği %25 ve minimum bağlı karbon içeriği %60) göre değerlendirilmiştir. Yapılan bu çalışma sonucunda, patlıcan sapı, muz ve portakal kabuğunun su içeriği % 13.8, % 21.9 ve % 19.3; Kül içeriği %6,50, %8,50 ve %22,4; Buhar içeriği %15,5, %26,2 ve %22.8; Bağlı karbon içeriği %78.0, %65.3 ve %54.8 bulunmuştur. Sonuç olarak, Bu biyokütleler arasında, patlıcan sapının aktif karbon üretimi için en uygun kaynak olduğu tespit edilmiştir.

Kaynakça

  • Ali, G.M.A. Thalji, M.R. Soh, W.C. Algarni, H. Chong, K.F. (2020). One-step electrochemical synthesis of MoS2/graphene composite for supercapacitor application, J Solid State Electrochem 24 2020 25–34.
  • Bader N, Ouederni A. (2017). Functionalized and metal-doped biomass-derived activated carbons for energy storage application. J Energy Storage, 13:268–76.
  • Bansode R.R, Losso J.N, Marshall W.E, Rao R.M, Portier R.J. (2003). Adsorption of volatile organic compounds by pecan shell- and almond-shell based granular activated carbons,. Bioresour Technol, 90:175–84.
  • Bi, Z. Kong, Q. Cao, Y. Sun,G. Su, F. Wei, X. (2019). Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review, J. Mater. Chem. A 7 16028.
  • Chingombe, P. Saha, B. Wakeman, R.J. (2005). Surface modification and characterisation of a coal-based activated carbon. Carbon 43:3132–43.
  • Chmiola, J. Yushin, G. Gogotsi, Y. Portet, Simon, C. (2006). Taberna, P.-L. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science 313 1760–1763.
  • Crini G. (2006). Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol, 97:1061–85.
  • Cui J, Zhang L. (2008). Metallurgical recovery of metals from electronic waste: a review. J Hazard Mater, 158:228–56.
  • Haji, A.G., Pari, G., dan Nazar, M. (2013). Characterization of activated carbon produced from urban organic wasteInt. J. Sci. Eng. 5:2, 89–94.
  • Holtz RD, Oliveira SB, de, Fraga MA, Rangel M,C. (2008). Synthesis and character ization of polymeric activated carbon-supported vanadium and magnesium cata lysts for ethylbenzene dehydrogenation. Appl Catal A Gen, 350:79–85.
  • Karatepe N, Orbak İ, Yavuz R, Özyuğuran A. (2008). Sulfur dioxide adsorption by activated carbons having different textural and chemical properties. Fuel, 87:3207–15.
  • Kazmierczak J, Nowicki P, Pietrzak R. (2013). Sorption properties of activated carbons obtained from corn cobs by chemical and physical activation. Adsorption, 19:273–81.
  • Khan, A. Senthil, R.A. Pan, J. Osman, S. Sun, Y. Shu, X. (2020). A new biomass derived rod like porous carbon from tea-waste as inexpensive and sustainable energy material for advanced supercapacitor application, Electrochim. Acta 335, 135588.
  • Kim YI, Bae BU. (2007). Design, and evaluation of hydraulic baffled-channel PAC contactor for taste and odor removal from drinking water supplies. Water Res, 41:2256–64.
  • Lu, H. Zhao, X.S. (2017). Biomass-derived carbon electrode materials for supercapacitors, Sustain. Energy Fuels 1 1265–1281.
  • Mudoga HL, Yucel H, Kincal NS. (2008). Decolorization of sugar syrups using commercial and sugar beet pulp based activated carbons. Bioresour Technol, 99:3528–33.
  • Pietrzak R, Bandosz T.J. (2007). Activated carbons modified with sewage sludge derived phase and their application in the process of NO2 removal. Carbon; 45:2537–46.
  • Ramazanoğlu, D., & Özdemir, F. (2022). Biomimetic surface accumulation on Fagus orientalis. Applied Nanoscience, 12(8), 2421-2428.
  • Santoro D, Jong V De, Louw R. (2003).Hydrodehalogenation of chlorobenzene on acti vated carbon and activated carbon supported catalysts. 50:1255–60.
  • Singh KP, Malik A, Sinha S, Ojha P. (2008). Liquid-phase adsorption of phenols using ac tivated carbons derived from agricultural waste material. J Hazard Mater, 150:626–41.
  • Tan X fei, Liu S bo, Liu Y guo, Gu Y ling, Zeng G ming, Hu X jiang, et al. (2017).Biochar as potential sustainable precursors for activated carbon production: multiple appli cations in environmental protection and energy storage. Bioresour Technol, 227:359–72.
  • Tsyntsarski B, Stoycheva I, Tsoncheva T, Genova I, Dimitrov M, Petrova B, et al. (2015). Activated carbons from waste biomass and low rank coals as catalyst supports for hydrogen production by methanol decomposition. Fuel Process Technol, 137:139–47.
  • Wang T, Tan S, Liang C. (2009). Preparation, and characterization of activated carbon from wood via microwave induced ZnCl2 activation. Carbon N.Y, 47:1880–3.
  • Wang, Y. Qu, Q. Gao, S.Tang, G. Liu, K. He, S. et al., (2019). Biomass derived carbon as binder-free electrode material for supercapacitors, Carbon 155 706–726.
  • Yadav, N.P.R, Hashmi, S.A. (2020). Hierarchical porous carbon derived from eucalyptus-bark as a sustainable electrode for high-performance solid-state supercapacitors, Sustain. Energy Fuels 4. 1730–1746.
  • Zhang, J. Xue, J. Li, P. Huang, S. Feng, H. Luo, H. (2018). Preparation of metal-organic framework-derived porous carbon and study of its supercapacitive performance, Electrochim. Acta 284 328–335.
  • Zhou, Y. Ren, J. Xia, L. Zheng, Q. Liao, J. Long, E. et al., (2018). Waste soybean dreg derived N/O co-doped hierarchical porous carbon for high performance supercapacitor, Electrochim. Acta 284 2018 336–345.

Synthesis of Activated Carbon from Different Biomasses

Yıl 2023, Cilt: 3 Sayı: 2, 24 - 33, 24.05.2023

Öz

Activated carbons have an essential role and wide usage area from the energy storage industry to water and air cleaning systems. In this study, activated carbon had synthesized from three different biomass eggplant (Solanum melongena) stalks, Banana (Musa sapientum), and Orange (Citrus sinensis) peels. Carbonization has accomplished at 1200 °C for 2 hours. After that, 4N of Sulfuric acid (H2SO4) had used as an activated agent for 24 hours of impregnation. Finally, the activated carbons had optimized according to the Indonesian National Standard measurement, SNI 06-3730-1995.5 (maximum water content 15%, maximal ash content 10%, maximal vapor content 25%, and minimal bounded carbon 60%). According to result, the water content of Eggplant stalk, banana, and orange peels are 13.8 %, 21.9 % and 19.3 %; Ash content 6.50 %, 8.50 % and 22.4 %; Vapor content 15.5 %, 26.2 %, and 22.8 %; Bounded carbon content 78.0 %, 65.3 %, and 54.8 % were found. Finally, the Stalk of eggplant has provided the best biomass for producing activated carbon.

Kaynakça

  • Ali, G.M.A. Thalji, M.R. Soh, W.C. Algarni, H. Chong, K.F. (2020). One-step electrochemical synthesis of MoS2/graphene composite for supercapacitor application, J Solid State Electrochem 24 2020 25–34.
  • Bader N, Ouederni A. (2017). Functionalized and metal-doped biomass-derived activated carbons for energy storage application. J Energy Storage, 13:268–76.
  • Bansode R.R, Losso J.N, Marshall W.E, Rao R.M, Portier R.J. (2003). Adsorption of volatile organic compounds by pecan shell- and almond-shell based granular activated carbons,. Bioresour Technol, 90:175–84.
  • Bi, Z. Kong, Q. Cao, Y. Sun,G. Su, F. Wei, X. (2019). Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review, J. Mater. Chem. A 7 16028.
  • Chingombe, P. Saha, B. Wakeman, R.J. (2005). Surface modification and characterisation of a coal-based activated carbon. Carbon 43:3132–43.
  • Chmiola, J. Yushin, G. Gogotsi, Y. Portet, Simon, C. (2006). Taberna, P.-L. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science 313 1760–1763.
  • Crini G. (2006). Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol, 97:1061–85.
  • Cui J, Zhang L. (2008). Metallurgical recovery of metals from electronic waste: a review. J Hazard Mater, 158:228–56.
  • Haji, A.G., Pari, G., dan Nazar, M. (2013). Characterization of activated carbon produced from urban organic wasteInt. J. Sci. Eng. 5:2, 89–94.
  • Holtz RD, Oliveira SB, de, Fraga MA, Rangel M,C. (2008). Synthesis and character ization of polymeric activated carbon-supported vanadium and magnesium cata lysts for ethylbenzene dehydrogenation. Appl Catal A Gen, 350:79–85.
  • Karatepe N, Orbak İ, Yavuz R, Özyuğuran A. (2008). Sulfur dioxide adsorption by activated carbons having different textural and chemical properties. Fuel, 87:3207–15.
  • Kazmierczak J, Nowicki P, Pietrzak R. (2013). Sorption properties of activated carbons obtained from corn cobs by chemical and physical activation. Adsorption, 19:273–81.
  • Khan, A. Senthil, R.A. Pan, J. Osman, S. Sun, Y. Shu, X. (2020). A new biomass derived rod like porous carbon from tea-waste as inexpensive and sustainable energy material for advanced supercapacitor application, Electrochim. Acta 335, 135588.
  • Kim YI, Bae BU. (2007). Design, and evaluation of hydraulic baffled-channel PAC contactor for taste and odor removal from drinking water supplies. Water Res, 41:2256–64.
  • Lu, H. Zhao, X.S. (2017). Biomass-derived carbon electrode materials for supercapacitors, Sustain. Energy Fuels 1 1265–1281.
  • Mudoga HL, Yucel H, Kincal NS. (2008). Decolorization of sugar syrups using commercial and sugar beet pulp based activated carbons. Bioresour Technol, 99:3528–33.
  • Pietrzak R, Bandosz T.J. (2007). Activated carbons modified with sewage sludge derived phase and their application in the process of NO2 removal. Carbon; 45:2537–46.
  • Ramazanoğlu, D., & Özdemir, F. (2022). Biomimetic surface accumulation on Fagus orientalis. Applied Nanoscience, 12(8), 2421-2428.
  • Santoro D, Jong V De, Louw R. (2003).Hydrodehalogenation of chlorobenzene on acti vated carbon and activated carbon supported catalysts. 50:1255–60.
  • Singh KP, Malik A, Sinha S, Ojha P. (2008). Liquid-phase adsorption of phenols using ac tivated carbons derived from agricultural waste material. J Hazard Mater, 150:626–41.
  • Tan X fei, Liu S bo, Liu Y guo, Gu Y ling, Zeng G ming, Hu X jiang, et al. (2017).Biochar as potential sustainable precursors for activated carbon production: multiple appli cations in environmental protection and energy storage. Bioresour Technol, 227:359–72.
  • Tsyntsarski B, Stoycheva I, Tsoncheva T, Genova I, Dimitrov M, Petrova B, et al. (2015). Activated carbons from waste biomass and low rank coals as catalyst supports for hydrogen production by methanol decomposition. Fuel Process Technol, 137:139–47.
  • Wang T, Tan S, Liang C. (2009). Preparation, and characterization of activated carbon from wood via microwave induced ZnCl2 activation. Carbon N.Y, 47:1880–3.
  • Wang, Y. Qu, Q. Gao, S.Tang, G. Liu, K. He, S. et al., (2019). Biomass derived carbon as binder-free electrode material for supercapacitors, Carbon 155 706–726.
  • Yadav, N.P.R, Hashmi, S.A. (2020). Hierarchical porous carbon derived from eucalyptus-bark as a sustainable electrode for high-performance solid-state supercapacitors, Sustain. Energy Fuels 4. 1730–1746.
  • Zhang, J. Xue, J. Li, P. Huang, S. Feng, H. Luo, H. (2018). Preparation of metal-organic framework-derived porous carbon and study of its supercapacitive performance, Electrochim. Acta 284 328–335.
  • Zhou, Y. Ren, J. Xia, L. Zheng, Q. Liao, J. Long, E. et al., (2018). Waste soybean dreg derived N/O co-doped hierarchical porous carbon for high performance supercapacitor, Electrochim. Acta 284 2018 336–345.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Doğu Ramazanoğlu 0000-0002-6356-5792

Zaman Adnan Mohammed 0000-0002-3457-3953

Samira Abdulqadr 0000-0003-1413-2146

Khalid Maher 0000-0002-5927-2209

Yayımlanma Tarihi 24 Mayıs 2023
Gönderilme Tarihi 12 Ekim 2022
Kabul Tarihi 28 Ocak 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 3 Sayı: 2

Kaynak Göster

APA Ramazanoğlu, D., Mohammed, Z. A., Abdulqadr, S., Maher, K. (2023). Synthesis of Activated Carbon from Different Biomasses. Şırnak Üniversitesi Fen Bilimleri Dergisi, 3(2), 24-33.