BibTex RIS Kaynak Göster

KESİKLİ HARMONİ ARAMA ALGORİTMASI İLE OPTİMİZASYON PROBLEMLERİNİN ÇÖZÜMÜ: LİTERATÜR ARAŞTIRMASI

Yıl 2011, Cilt: 26 Sayı: 4, 140 - 148, 01.12.2011

Öz

Genellikle optimizasyon problemlerinde kullanılan değişkenlerin sürekli değişkenler olduğu kabul edilmektedir. Ancak gerçek hayatta çoğu problemin değişkenleri kesikli veya tam sayı değişkenler şeklindedir. Optimizasyon problemlerinde kesikli tam sayı değişkenlerin dikkate alınmasıyla karmaşıklık daha fazla artmaktadır. Bu tür karmaşık problemlerin çözümünde az da olsa çeşitli yöntemler mevcuttur. Bu çalışmada bir müzik eserinde oluşan harmoniden esinlenilerek geliştirilen Harmoni Arama Algoritması ve henüz yeni bir uygulaması olan Kesikli Harmoni Arama Algoritması ile ilgili yapılan araştırmalar incelenmiştir. Kesikli Harmoni Arama Algoritması kullanılarak optimizasyon problemlerinin çözümü bu konuda bir alternatif sağlayacaktır.

Kaynakça

  • Alataş, B., 2010,“Chaotic Harmony Search Algorithms”, Applied Mathematics and Computation, Vol. 216, No.1, pp. 2687–2699.
  • Ayvaz, M. T., 2007, “Simultaneous Determination of Aquifer Parameters and Zone Structures with Fuzzy C-Means Clustering and Meta-Heuristic Harmony Search Algorithm”, Advances in Water Resources, Vol. 30, No.1, pp. 2326–2338.
  • Ayvaz, M. T., 2009, “Application of Harmony Search Algorithm to the Solution of Groundwater Management Models”, Advances in Water Resources, Vol. 32, No.1, pp. 916–924.
  • Ceylan, H., Ceylan, H., Haldenbilen, S., Başkan, Ö., 2008, “Transport Energy Modeling with MetaHeuristic Harmony Search Algorithm,an Application to Turkey”, Energy Policy, Vol. 36, No.1, pp. 2527– 2535.
  • Coelho, L. S., Bernert, D. L. A., 2009, “An Improved Harmony Search Algorithm for Synchronization of Discrete-Time Chaotic Systems”, Chaos, Solutions and Fractals, Vol.41, No.1, pp. 2526–2532.
  • Cura, T., 2008, Modern Sezgisel Teknikler ve Uygulamaları, Papatya Yayınları, İstanbul, 14-15.
  • Fesanghary, M., Mahdavi, M., Jolandan, M. M., Alizadeh, Y., 2008, “Hybridizing Harmony Search Algorithm with Sequential Quadratic Programming for Engineering Optimization Problems”, Computer Methods Appl. Mech. Engrg., Vol.197, No.1, pp. 3080–3091.
  • Gao, K. Z., Pan, Q. K., Li, J. Q., 2011, “Discrete Harmony Search Algorithm for the No-Wait Flow Shop Scheduling Problem with Total Flow Time Criterion”, The International Journal of Advanced Manufacturing Technology, DOI 10.1007/s00170-011-3197-6.
  • Geem, Z. W., Kim, J. H., Loganathan, G. V., 2001, “A New Heuristic Optimization Algorithm: Harmony Search”, Simulations, Vol. 76, No.1, pp. 60-68.
  • Geem, Z. W., 2008, “Novel Derivative of Harmony Search Algorithm for Discrete Design Variables”, Applied Mathematics and Computation, Vol. 199, No.1, pp. 223–230.
  • Geem, Z. W., Sim, K. B., 2010, “Parameter-setting-free harmony search algorithm”, Applied Mathematics and Computation, Vol. 217, No.1, pp. 3881–3889.
  • Han, Y.Y., Pan, Q.K., Liang, J.J., Li, J., 2010, “A Hybrid Discrete Harmony Search Algorithm for Blocking Flow shop Scheduling, Bio-Inspired Computing: Theories and Applications (BIC-TA)”, 2010 IEEE Fifth International Conference, Changsha, 435-438.
  • Jaberipour, M., Khorram, E., 2010, “Two Improved Harmony Search Algorithms for Solving Engineering Optimization Problems”, Communication in Nonlinear Science and Numerical Simulation, Vol. 15, No.1, pp. 3316–3331.
  • Mahdavi, M., Fesanghary, M., Damangir, E., 2007, “An Improved Harmony Search Algorithm for Solving Optimization Problems”, Applied Mathematics and Computation, Vol. 188, No.1, pp. 1567– 1579.
  • Nawaz, M., Enscore, E. E. J., Ham, I., 1983, “A Heuristic Algorithm for Them-Machine, N-Job Flow Shop Sequencing Problem”, International Journal of Management Science, Vol. 11, No.1, pp. 91 -95.
  • Lee, K. S., Geem, Z. W., 2004, “A New Structural Optimization Method Based on the Harmony Search Algorithm”, Computers and Structures, Vol. 82, No.1, pp. 781–798.
  • Lee, K. S., Geem, Z. W., 2005, “A New Meta-Heuristic Algorithm for Continuous Engineering Optimization: Harmony Search Theory and Practice”, Comput. Methods Appl. Mech. Engrg.,Vol.194, No.1, pp. 3902–3933.
  • Omran, M. G. H., Mahdavi, M., 2008, “Global-Best Harmony Search”, Applied Mathematics and Computation, Vol.198, No.1, pp. 643–656.
  • Pan, Q. K., Suganthan, P. N., Taşgetiren, M. F., Liang, J.J., 2010a, “A Self-Adaptive Global Best Harmony Search Algorithm for Continuous Optimization Problems”, Applied Mathematics and Computation, Vol.216, No.1, pp. 830–848.
  • Pan, Q. K., Duan, J. H., Liang, J. J., Gao, K., Li J., 2010b, “A Novel Discrete Harmony Search Algorithm for Scheduling Lot-streaming Flow Shops”, Control and Decision Conference (CCDC), 2010 Chinese, Xuzhou, 1531-1536.
  • Pan, Q. K., Suganthan, P. N., Liang, J.J., Taşgetiren, M. F., 2011, “A Local-Best Harmony Search Algorithm with Dynamic Sub-Harmony Memories for Lot-Streaming Flow Shop Scheduling Problem”, Expert Systems with Applications Vol. 38, No.1, pp. 3252–3259.
  • Rao, S. S., 1996, Engineering Optimization: Theory and Practice, Third Edition, John Wiley & Son, New York.
  • Saka, M., P., 2009, “Optimum Design of Steel Sway Frames to BS5950 Using Harmony Search Algorithm”, Journal of Constructional Steel Research, Vol. 65, No.1, pp. 36–43.
  • Wang, L., Pan, Q. K., Taşgetiren M. F., 2010, “Minimizing the Total Flow Time in a Flow Shop With Blocking by Using Hybrid Harmony Search Algorithms”, Expert Systems with Applications, Vol. 37, No.1, pp. 7929–7936.
  • Wang, L., Pan, Q. K., Taşgetiren., M. F., 2011, “A Hybrid Harmony Search Algorithm for The Blocking Permutation Flow Shop Scheduling Problem”, Computers & Industrial Engineering, Vol. 61, No.1, pp. 76–83.
  • Zou, D., Gao, L., Li, S., Wu, J., 2011a, “Solving 0–1 Knapsack Problem by a Novel Global Harmony Search Algorithm”, Applied Soft Computing, Vol. 11, No.1, pp. 1556–1564.
  • Zou, D., Gao, L., Li, S., Wu, J., 2011b, “An Effective Global Harmony Search Algorithm for Reliability Problems”, Expert Systems with Applications, Vol. 38, No.1, pp. 4642–4648.
  • Zou, D., Gao, L., Wu, J., Li, S., Li Y., 2010a, “A Novel Global Harmony Search Algorithm for Reliability Problems”, Computers & Industrial Engineering, Vol. 58, No.1, pp. 307–316.
  • Zou, D., Gao, L., Wu, J., Li, S., Wu, J., Wang, X., 2010b, “A Novel Global Harmony Search Algorithm for Task Assignment Problem”, The Journal of Systems and Software, Vol. 83, No.1, pp. 1678–1688.

Optimization Problems Solving with Using of Discrete Harmony Search Algorithm: A Review

Yıl 2011, Cilt: 26 Sayı: 4, 140 - 148, 01.12.2011

Öz

It is usually assumed the variables which are used in the optimization problems are continuous variables. However, the variables have discrete or integer values in many real life practices. Considering discrete integer variables in the optimization problems makes the problems more complex. There are few methods to solve these type of problems. The Harmony Search Algorithm inspired by improvisation of musical harmony and a recent variant of it, The Discrete Harmony Search Algorithm were investigated. It is thought that The usage of the Discrete Harmony Search Algorithm is going to provide a good alternative to solve the optimization problems.

Kaynakça

  • Alataş, B., 2010,“Chaotic Harmony Search Algorithms”, Applied Mathematics and Computation, Vol. 216, No.1, pp. 2687–2699.
  • Ayvaz, M. T., 2007, “Simultaneous Determination of Aquifer Parameters and Zone Structures with Fuzzy C-Means Clustering and Meta-Heuristic Harmony Search Algorithm”, Advances in Water Resources, Vol. 30, No.1, pp. 2326–2338.
  • Ayvaz, M. T., 2009, “Application of Harmony Search Algorithm to the Solution of Groundwater Management Models”, Advances in Water Resources, Vol. 32, No.1, pp. 916–924.
  • Ceylan, H., Ceylan, H., Haldenbilen, S., Başkan, Ö., 2008, “Transport Energy Modeling with MetaHeuristic Harmony Search Algorithm,an Application to Turkey”, Energy Policy, Vol. 36, No.1, pp. 2527– 2535.
  • Coelho, L. S., Bernert, D. L. A., 2009, “An Improved Harmony Search Algorithm for Synchronization of Discrete-Time Chaotic Systems”, Chaos, Solutions and Fractals, Vol.41, No.1, pp. 2526–2532.
  • Cura, T., 2008, Modern Sezgisel Teknikler ve Uygulamaları, Papatya Yayınları, İstanbul, 14-15.
  • Fesanghary, M., Mahdavi, M., Jolandan, M. M., Alizadeh, Y., 2008, “Hybridizing Harmony Search Algorithm with Sequential Quadratic Programming for Engineering Optimization Problems”, Computer Methods Appl. Mech. Engrg., Vol.197, No.1, pp. 3080–3091.
  • Gao, K. Z., Pan, Q. K., Li, J. Q., 2011, “Discrete Harmony Search Algorithm for the No-Wait Flow Shop Scheduling Problem with Total Flow Time Criterion”, The International Journal of Advanced Manufacturing Technology, DOI 10.1007/s00170-011-3197-6.
  • Geem, Z. W., Kim, J. H., Loganathan, G. V., 2001, “A New Heuristic Optimization Algorithm: Harmony Search”, Simulations, Vol. 76, No.1, pp. 60-68.
  • Geem, Z. W., 2008, “Novel Derivative of Harmony Search Algorithm for Discrete Design Variables”, Applied Mathematics and Computation, Vol. 199, No.1, pp. 223–230.
  • Geem, Z. W., Sim, K. B., 2010, “Parameter-setting-free harmony search algorithm”, Applied Mathematics and Computation, Vol. 217, No.1, pp. 3881–3889.
  • Han, Y.Y., Pan, Q.K., Liang, J.J., Li, J., 2010, “A Hybrid Discrete Harmony Search Algorithm for Blocking Flow shop Scheduling, Bio-Inspired Computing: Theories and Applications (BIC-TA)”, 2010 IEEE Fifth International Conference, Changsha, 435-438.
  • Jaberipour, M., Khorram, E., 2010, “Two Improved Harmony Search Algorithms for Solving Engineering Optimization Problems”, Communication in Nonlinear Science and Numerical Simulation, Vol. 15, No.1, pp. 3316–3331.
  • Mahdavi, M., Fesanghary, M., Damangir, E., 2007, “An Improved Harmony Search Algorithm for Solving Optimization Problems”, Applied Mathematics and Computation, Vol. 188, No.1, pp. 1567– 1579.
  • Nawaz, M., Enscore, E. E. J., Ham, I., 1983, “A Heuristic Algorithm for Them-Machine, N-Job Flow Shop Sequencing Problem”, International Journal of Management Science, Vol. 11, No.1, pp. 91 -95.
  • Lee, K. S., Geem, Z. W., 2004, “A New Structural Optimization Method Based on the Harmony Search Algorithm”, Computers and Structures, Vol. 82, No.1, pp. 781–798.
  • Lee, K. S., Geem, Z. W., 2005, “A New Meta-Heuristic Algorithm for Continuous Engineering Optimization: Harmony Search Theory and Practice”, Comput. Methods Appl. Mech. Engrg.,Vol.194, No.1, pp. 3902–3933.
  • Omran, M. G. H., Mahdavi, M., 2008, “Global-Best Harmony Search”, Applied Mathematics and Computation, Vol.198, No.1, pp. 643–656.
  • Pan, Q. K., Suganthan, P. N., Taşgetiren, M. F., Liang, J.J., 2010a, “A Self-Adaptive Global Best Harmony Search Algorithm for Continuous Optimization Problems”, Applied Mathematics and Computation, Vol.216, No.1, pp. 830–848.
  • Pan, Q. K., Duan, J. H., Liang, J. J., Gao, K., Li J., 2010b, “A Novel Discrete Harmony Search Algorithm for Scheduling Lot-streaming Flow Shops”, Control and Decision Conference (CCDC), 2010 Chinese, Xuzhou, 1531-1536.
  • Pan, Q. K., Suganthan, P. N., Liang, J.J., Taşgetiren, M. F., 2011, “A Local-Best Harmony Search Algorithm with Dynamic Sub-Harmony Memories for Lot-Streaming Flow Shop Scheduling Problem”, Expert Systems with Applications Vol. 38, No.1, pp. 3252–3259.
  • Rao, S. S., 1996, Engineering Optimization: Theory and Practice, Third Edition, John Wiley & Son, New York.
  • Saka, M., P., 2009, “Optimum Design of Steel Sway Frames to BS5950 Using Harmony Search Algorithm”, Journal of Constructional Steel Research, Vol. 65, No.1, pp. 36–43.
  • Wang, L., Pan, Q. K., Taşgetiren M. F., 2010, “Minimizing the Total Flow Time in a Flow Shop With Blocking by Using Hybrid Harmony Search Algorithms”, Expert Systems with Applications, Vol. 37, No.1, pp. 7929–7936.
  • Wang, L., Pan, Q. K., Taşgetiren., M. F., 2011, “A Hybrid Harmony Search Algorithm for The Blocking Permutation Flow Shop Scheduling Problem”, Computers & Industrial Engineering, Vol. 61, No.1, pp. 76–83.
  • Zou, D., Gao, L., Li, S., Wu, J., 2011a, “Solving 0–1 Knapsack Problem by a Novel Global Harmony Search Algorithm”, Applied Soft Computing, Vol. 11, No.1, pp. 1556–1564.
  • Zou, D., Gao, L., Li, S., Wu, J., 2011b, “An Effective Global Harmony Search Algorithm for Reliability Problems”, Expert Systems with Applications, Vol. 38, No.1, pp. 4642–4648.
  • Zou, D., Gao, L., Wu, J., Li, S., Li Y., 2010a, “A Novel Global Harmony Search Algorithm for Reliability Problems”, Computers & Industrial Engineering, Vol. 58, No.1, pp. 307–316.
  • Zou, D., Gao, L., Wu, J., Li, S., Wu, J., Wang, X., 2010b, “A Novel Global Harmony Search Algorithm for Task Assignment Problem”, The Journal of Systems and Software, Vol. 83, No.1, pp. 1678–1688.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA47FF85BD
Bölüm Makaleler
Yazarlar

Mehmet Cabir Akkoyunlu Bu kişi benim

Orhan Engin

Yayımlanma Tarihi 1 Aralık 2011
Yayımlandığı Sayı Yıl 2011 Cilt: 26 Sayı: 4

Kaynak Göster

APA Akkoyunlu, M. C., & Engin, O. (2011). KESİKLİ HARMONİ ARAMA ALGORİTMASI İLE OPTİMİZASYON PROBLEMLERİNİN ÇÖZÜMÜ: LİTERATÜR ARAŞTIRMASI. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, 26(4), 140-148.
AMA Akkoyunlu MC, Engin O. KESİKLİ HARMONİ ARAMA ALGORİTMASI İLE OPTİMİZASYON PROBLEMLERİNİN ÇÖZÜMÜ: LİTERATÜR ARAŞTIRMASI. sujest. Aralık 2011;26(4):140-148.
Chicago Akkoyunlu, Mehmet Cabir, ve Orhan Engin. “KESİKLİ HARMONİ ARAMA ALGORİTMASI İLE OPTİMİZASYON PROBLEMLERİNİN ÇÖZÜMÜ: LİTERATÜR ARAŞTIRMASI”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 26, sy. 4 (Aralık 2011): 140-48.
EndNote Akkoyunlu MC, Engin O (01 Aralık 2011) KESİKLİ HARMONİ ARAMA ALGORİTMASI İLE OPTİMİZASYON PROBLEMLERİNİN ÇÖZÜMÜ: LİTERATÜR ARAŞTIRMASI. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 26 4 140–148.
IEEE M. C. Akkoyunlu ve O. Engin, “KESİKLİ HARMONİ ARAMA ALGORİTMASI İLE OPTİMİZASYON PROBLEMLERİNİN ÇÖZÜMÜ: LİTERATÜR ARAŞTIRMASI”, sujest, c. 26, sy. 4, ss. 140–148, 2011.
ISNAD Akkoyunlu, Mehmet Cabir - Engin, Orhan. “KESİKLİ HARMONİ ARAMA ALGORİTMASI İLE OPTİMİZASYON PROBLEMLERİNİN ÇÖZÜMÜ: LİTERATÜR ARAŞTIRMASI”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 26/4 (Aralık 2011), 140-148.
JAMA Akkoyunlu MC, Engin O. KESİKLİ HARMONİ ARAMA ALGORİTMASI İLE OPTİMİZASYON PROBLEMLERİNİN ÇÖZÜMÜ: LİTERATÜR ARAŞTIRMASI. sujest. 2011;26:140–148.
MLA Akkoyunlu, Mehmet Cabir ve Orhan Engin. “KESİKLİ HARMONİ ARAMA ALGORİTMASI İLE OPTİMİZASYON PROBLEMLERİNİN ÇÖZÜMÜ: LİTERATÜR ARAŞTIRMASI”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, c. 26, sy. 4, 2011, ss. 140-8.
Vancouver Akkoyunlu MC, Engin O. KESİKLİ HARMONİ ARAMA ALGORİTMASI İLE OPTİMİZASYON PROBLEMLERİNİN ÇÖZÜMÜ: LİTERATÜR ARAŞTIRMASI. sujest. 2011;26(4):140-8.

MAKALELERINIZI 

http://sujest.selcuk.edu.tr

uzerinden gonderiniz