Araştırma Makalesi
BibTex RIS Kaynak Göster

Alüminyum 7075 Alaşiminin Malzeme Davranişinin Tespiti ve Johnson-Cook Hasar Parametrelerinin Optimizasyonu

Yıl 2018, Cilt: 6 Sayı: 2, 343 - 354, 01.06.2018
https://doi.org/10.15317/Scitech.2018.137

Öz

Alüminyum 7075-T651 alaşımının mekanik davranışına hadde yönünün ve çentik yarıçapının etkileri incelenmiş ve bu alaşımın iki farklı hadde yönü için Johnson-Cook hasar katsayıları hesaplanmıştır. Spesifik olarak, hadde yönünde ve hadde yönüne dik olarak hazırlanmış alüminyum 7075-T651 alaşımının mekanik davranışları çekme testleri sonucunda belirlenmiştir. 3 farklı çentik yarıçapındaki numunelere ve çentiksiz numunelere olmak üzere toplamda 56 adet çekme testi gerçekleştirilmiştir. Her bir çekme testi tutarlılığı sağlamak ve gerçek mekanik davranışa en yakın sonucu en düşük hata ile elde etmek adına 7 kere tekrarlanmıştır. Deneysel bulgular hadde yönüne dik olmanın uzamayı azalttığını fakat elastik bölgedeki mekanik özellikleri arttırabildiğini göstermektedir. Johnson-Cook hasar katsayılarının hesaplanmasında kullanılan kırılmış yüzey alanları optik mikroskop ile ölçülmüştür. Alüminyum 7075-T651 alaşımının Johnson-Cook hasar katsayıları farklı uygulama alanları için Levenberg-Marquardt optimizasyon methodunu kullanarak hesaplanmıştır. Bu sebeple, bu çalışma hadde yönünde ve hadde yönüne dik olarak hazırlanmış alüminyum 7075-T651 alaşımının farklı uygulama alanlarındaki hassas hasar simulasyonları için yol gösterici bir alan açmaktadır.

Kaynakça

  • Binder, M., Klocke, F., Lung, D., 2015, "Tool Wear Simulation of Complex Shaped Coated Cutting Tools", Wear, Vol. 330–331, pp. 600-607.
  • Bobbili, R., Ramakrishna, B., Madhu, V., Gogia, A. K., 2015, "Prediction of Flow Stress of 7017 Aluminium Alloy under High Strain Rate Compression at Elevated Temperatures", Defence Technology, Vol. 11, pp. 93–98.
  • Bobbili, R., Madhu, V., 2016, "Effect of Strain Rate and Stress Triaxiality on Tensile Behavior of Titanium Alloy Ti-10-2-3 at Elevated Temperatures", Materials Science and Engineering A, Vol. 667, pp. 33–41.
  • Bobbili, R., Paman, A., Madhu, V., 2016, "High Strain Rate Tensile Behavior of Al-4.8Cu-1.2Mg Alloy", Materials Science and Engineering A, Vol. 651, pp. 753–762.
  • Børvik, T., Hopperstad, O. S., Dey, S., Pizzinato, E. V., Langseth, M., Albertini, C., 2005, "Strength and Ductility of Weldox 460 E Steel at High Strain Rates, Elevated Temperatures and Various Stress Triaxialities", Engineering Fracture Mechanics, Vol. 72, pp. 1071–1087.
  • Brar, N. S., Joshi, V. S., 2012, "Anisotropic Effects on Constitutive Model Parameters of Aluminum Alloys", AIP Conference Proceedings, Vol. 1426 (1), pp. 72–75.
  • Brar, N. S., Joshi, V. S., Harris, B. W., 2009, "Constitutive Model Constants for Al7075-T651 and Al7075-T6", AIP Conference Proceedings, Vol. 1195 (1), pp. 945–948.
  • Cai, M.-C., Niu, L.-S., Ma, X.-F., Shi, H.-J., 2010, "A Constitutive Description of the Strain Rate and Temperature Effects on the Mechanical Behavior of Materials", Mechanics of Materials, Vol. 42 (8), pp. 774–781.
  • Chen, G., Ren, C., Qin, X., Li, J., 2015, "Temperature Dependent Work Hardening in Ti–6Al–4V Alloy Over Large Temperature and Strain Rate Ranges: Experiments and Constitutive Modeling", Materials & Design, Vol. 83, pp. 598–610.
  • Chocron, S., Erice, B., Anderson, C. E., 2011, "A New Plasticity and Failure Model for Ballistic Application", International Journal of Impact Engineering, Vol. 38 (8–9), pp. 755–764.
  • Choung, J., Nam, W., Lee, D., Song, C. Y., 2014, "Failure Strain Formulation via Average Stress Triaxiality of an EH36 High Strength Steel", Ocean Engineering, Vol. 91, pp. 218–226.
  • Hirsch, J., Al-Samman, T., 2013, "Superior Light Metals by Texture Engineering: Optimized Aluminum and Magnesium Alloys for Automotive Applications", Acta Materialia, Vol. 61 (3), pp. 818–843.
  • Keshavarz, A., Ghajar, R., Mirone, G., 2014, "A New Experimental Failure Model Based on Triaxiality Factor and Lode Angle for X-100 Pipeline Steel", International Journal of Mechanical Sciences, Vol. 80, pp. 175–182.
  • Kupchella, R., Stowe, D., Xiao, X., Algoso, A., Cogar, J., 2015, "Incorporation of Material Variability in the Johnson Cook Model", Procedia Engineering, Vol. 103, pp. 318–325.
  • Senthil, K., Iqbal, M. A., Chandel, P. S., Gupta, N., 2017, "Study of the Constitutive Behavior of 7075-T651 Aluminum Alloy", International Journal of Impact Engineering, Vol. 108, pp. 171-190.
  • Thepsonthi, T., Özel, T., 2015, "3-D Finite Element Process Simulation of Micro-end Milling Ti-6Al-4V Titanium Alloy: Experimental Validations on Chip Flow and Tool Wear", Journal of Materials Processing Technology, Vol. 221, pp. 128–145.
  • Valoppi, B., Bruschi, S., Ghiotti, A., Shivpuri, R., 2017, "Johnson-Cook Based Criterion Incorporating Stress Triaxiality and Deviatoric Effect for Predicting Elevated Temperature Ductility of Titanium Alloy Sheets", International Journal of Mechanical Sciences, Vol. 123 (01), pp. 94–105.
  • Wang, B., Liu, Z., 2016, "Evaluation on Fracture Locus of Serrated Chip Generation with Stress Triaxiality in High Speed Machining of Ti6Al4V", Materials and Design, Vol. 98, pp. 68–78.
  • Yuan, Z., Li, F., Qiao, H., Xiao, M., Cai, J., Li, J., 2013, "A Modified Constitutive Equation for Elevated Temperature Flow Behavior of Ti-6Al-4V Alloy Based on Double Multiple Nonlinear Regression", Materials Science and Engineering A, Vol. 578, pp. 260–270.
  • Zhang, D. N., Shangguan, Q. Q., Xie, C. J., Liu, F., 2015, "A Modified Johnson-Cook Model of Dynamic Tensile Behaviors for 7075-T6 Aluminum Alloy", Journal of Alloys and Compounds, Vol. 619, pp. 186–194.
  • Zhou, Z., Kuwamura, H., Nishida, A., 2011, "Effect of Micro Voids on Stress Triaxiality-Plastic Strain States of Notched Steels", Procedia Engineering, Vol. 10, pp. 1433–1439.

DETERMINATION OF MATERIAL RESPONSE AND OPTIMIZATION OF JOHNSON-COOK DAMAGE PARAMETERS OF ALUMINIUM 7075 ALLOY

Yıl 2018, Cilt: 6 Sayı: 2, 343 - 354, 01.06.2018
https://doi.org/10.15317/Scitech.2018.137

Öz

The effects of rolling direction and notch radius on the mechanical response of aluminium 7075-T651 alloy were investigated and the Johnson-Cook damage parameters of aluminium 7075-T651 alloy on both rolling directions were determined. Specifically, mechanical responses of aluminium 7075-T651 along the rolling direction and perpendicular to the rolling direction were obtained from monotonic tensile tests. 56 tensile tests in total were performed on notched specimens with 3 different notch radiuses and smooth specimens. Tensile tests were repeated 7 times for each case to ensure the consistency and to obtain the closest mechanical response to the real mechanical response with minimum error. Experimental findings revealed that being perpendicular to the rolling direction deteriorates the elongation at failure dramatically but can increase the mechanical properties in elastic region. The final areas of the fractured samples, used for the calculation of Johnson-Cook damage parameters, were measured by an optical microscope. The Johnson-Cook damage parameters of aluminium 7075-T651 alloy for different applications were computed by Levenberg-Marquardt optimization method. Collectively, this study opens the venue for accurate damage simulations of aluminium 7075-T651 along the rolling direction and perpendicular to the rolling direction for different applications.

Kaynakça

  • Binder, M., Klocke, F., Lung, D., 2015, "Tool Wear Simulation of Complex Shaped Coated Cutting Tools", Wear, Vol. 330–331, pp. 600-607.
  • Bobbili, R., Ramakrishna, B., Madhu, V., Gogia, A. K., 2015, "Prediction of Flow Stress of 7017 Aluminium Alloy under High Strain Rate Compression at Elevated Temperatures", Defence Technology, Vol. 11, pp. 93–98.
  • Bobbili, R., Madhu, V., 2016, "Effect of Strain Rate and Stress Triaxiality on Tensile Behavior of Titanium Alloy Ti-10-2-3 at Elevated Temperatures", Materials Science and Engineering A, Vol. 667, pp. 33–41.
  • Bobbili, R., Paman, A., Madhu, V., 2016, "High Strain Rate Tensile Behavior of Al-4.8Cu-1.2Mg Alloy", Materials Science and Engineering A, Vol. 651, pp. 753–762.
  • Børvik, T., Hopperstad, O. S., Dey, S., Pizzinato, E. V., Langseth, M., Albertini, C., 2005, "Strength and Ductility of Weldox 460 E Steel at High Strain Rates, Elevated Temperatures and Various Stress Triaxialities", Engineering Fracture Mechanics, Vol. 72, pp. 1071–1087.
  • Brar, N. S., Joshi, V. S., 2012, "Anisotropic Effects on Constitutive Model Parameters of Aluminum Alloys", AIP Conference Proceedings, Vol. 1426 (1), pp. 72–75.
  • Brar, N. S., Joshi, V. S., Harris, B. W., 2009, "Constitutive Model Constants for Al7075-T651 and Al7075-T6", AIP Conference Proceedings, Vol. 1195 (1), pp. 945–948.
  • Cai, M.-C., Niu, L.-S., Ma, X.-F., Shi, H.-J., 2010, "A Constitutive Description of the Strain Rate and Temperature Effects on the Mechanical Behavior of Materials", Mechanics of Materials, Vol. 42 (8), pp. 774–781.
  • Chen, G., Ren, C., Qin, X., Li, J., 2015, "Temperature Dependent Work Hardening in Ti–6Al–4V Alloy Over Large Temperature and Strain Rate Ranges: Experiments and Constitutive Modeling", Materials & Design, Vol. 83, pp. 598–610.
  • Chocron, S., Erice, B., Anderson, C. E., 2011, "A New Plasticity and Failure Model for Ballistic Application", International Journal of Impact Engineering, Vol. 38 (8–9), pp. 755–764.
  • Choung, J., Nam, W., Lee, D., Song, C. Y., 2014, "Failure Strain Formulation via Average Stress Triaxiality of an EH36 High Strength Steel", Ocean Engineering, Vol. 91, pp. 218–226.
  • Hirsch, J., Al-Samman, T., 2013, "Superior Light Metals by Texture Engineering: Optimized Aluminum and Magnesium Alloys for Automotive Applications", Acta Materialia, Vol. 61 (3), pp. 818–843.
  • Keshavarz, A., Ghajar, R., Mirone, G., 2014, "A New Experimental Failure Model Based on Triaxiality Factor and Lode Angle for X-100 Pipeline Steel", International Journal of Mechanical Sciences, Vol. 80, pp. 175–182.
  • Kupchella, R., Stowe, D., Xiao, X., Algoso, A., Cogar, J., 2015, "Incorporation of Material Variability in the Johnson Cook Model", Procedia Engineering, Vol. 103, pp. 318–325.
  • Senthil, K., Iqbal, M. A., Chandel, P. S., Gupta, N., 2017, "Study of the Constitutive Behavior of 7075-T651 Aluminum Alloy", International Journal of Impact Engineering, Vol. 108, pp. 171-190.
  • Thepsonthi, T., Özel, T., 2015, "3-D Finite Element Process Simulation of Micro-end Milling Ti-6Al-4V Titanium Alloy: Experimental Validations on Chip Flow and Tool Wear", Journal of Materials Processing Technology, Vol. 221, pp. 128–145.
  • Valoppi, B., Bruschi, S., Ghiotti, A., Shivpuri, R., 2017, "Johnson-Cook Based Criterion Incorporating Stress Triaxiality and Deviatoric Effect for Predicting Elevated Temperature Ductility of Titanium Alloy Sheets", International Journal of Mechanical Sciences, Vol. 123 (01), pp. 94–105.
  • Wang, B., Liu, Z., 2016, "Evaluation on Fracture Locus of Serrated Chip Generation with Stress Triaxiality in High Speed Machining of Ti6Al4V", Materials and Design, Vol. 98, pp. 68–78.
  • Yuan, Z., Li, F., Qiao, H., Xiao, M., Cai, J., Li, J., 2013, "A Modified Constitutive Equation for Elevated Temperature Flow Behavior of Ti-6Al-4V Alloy Based on Double Multiple Nonlinear Regression", Materials Science and Engineering A, Vol. 578, pp. 260–270.
  • Zhang, D. N., Shangguan, Q. Q., Xie, C. J., Liu, F., 2015, "A Modified Johnson-Cook Model of Dynamic Tensile Behaviors for 7075-T6 Aluminum Alloy", Journal of Alloys and Compounds, Vol. 619, pp. 186–194.
  • Zhou, Z., Kuwamura, H., Nishida, A., 2011, "Effect of Micro Voids on Stress Triaxiality-Plastic Strain States of Notched Steels", Procedia Engineering, Vol. 10, pp. 1433–1439.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Burak Bal

Yayımlanma Tarihi 1 Haziran 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 6 Sayı: 2

Kaynak Göster

APA Bal, B. (2018). DETERMINATION OF MATERIAL RESPONSE AND OPTIMIZATION OF JOHNSON-COOK DAMAGE PARAMETERS OF ALUMINIUM 7075 ALLOY. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, 6(2), 343-354. https://doi.org/10.15317/Scitech.2018.137
AMA Bal B. DETERMINATION OF MATERIAL RESPONSE AND OPTIMIZATION OF JOHNSON-COOK DAMAGE PARAMETERS OF ALUMINIUM 7075 ALLOY. sujest. Haziran 2018;6(2):343-354. doi:10.15317/Scitech.2018.137
Chicago Bal, Burak. “DETERMINATION OF MATERIAL RESPONSE AND OPTIMIZATION OF JOHNSON-COOK DAMAGE PARAMETERS OF ALUMINIUM 7075 ALLOY”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 6, sy. 2 (Haziran 2018): 343-54. https://doi.org/10.15317/Scitech.2018.137.
EndNote Bal B (01 Haziran 2018) DETERMINATION OF MATERIAL RESPONSE AND OPTIMIZATION OF JOHNSON-COOK DAMAGE PARAMETERS OF ALUMINIUM 7075 ALLOY. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 6 2 343–354.
IEEE B. Bal, “DETERMINATION OF MATERIAL RESPONSE AND OPTIMIZATION OF JOHNSON-COOK DAMAGE PARAMETERS OF ALUMINIUM 7075 ALLOY”, sujest, c. 6, sy. 2, ss. 343–354, 2018, doi: 10.15317/Scitech.2018.137.
ISNAD Bal, Burak. “DETERMINATION OF MATERIAL RESPONSE AND OPTIMIZATION OF JOHNSON-COOK DAMAGE PARAMETERS OF ALUMINIUM 7075 ALLOY”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 6/2 (Haziran 2018), 343-354. https://doi.org/10.15317/Scitech.2018.137.
JAMA Bal B. DETERMINATION OF MATERIAL RESPONSE AND OPTIMIZATION OF JOHNSON-COOK DAMAGE PARAMETERS OF ALUMINIUM 7075 ALLOY. sujest. 2018;6:343–354.
MLA Bal, Burak. “DETERMINATION OF MATERIAL RESPONSE AND OPTIMIZATION OF JOHNSON-COOK DAMAGE PARAMETERS OF ALUMINIUM 7075 ALLOY”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, c. 6, sy. 2, 2018, ss. 343-54, doi:10.15317/Scitech.2018.137.
Vancouver Bal B. DETERMINATION OF MATERIAL RESPONSE AND OPTIMIZATION OF JOHNSON-COOK DAMAGE PARAMETERS OF ALUMINIUM 7075 ALLOY. sujest. 2018;6(2):343-54.

MAKALELERINIZI 

http://sujest.selcuk.edu.tr

uzerinden gonderiniz