Derleme
BibTex RIS Kaynak Göster

Digital Agriculture Technologies Used in Horticultural Cultivation

Yıl 2023, Cilt: 19 Sayı: 3 - Tarım Makinaları Bilimi Dergisi, 19(3), 174 - 193, 27.12.2023

Öz

Many problems are encountered during agricultural activities due to the variety of products in agricultural production, the wide variety of cultivation areas and the labor-intensive cultivation. Various difficulties and uncertainties such as diseases, pests, economic crisis, drought, hail, flood are struggled during agricultural production and cultivation. Technical possibilities offered by technology enable many agricultural processes to be facilitated, provide alternative solutions to some existing problems and especially by ensuring that production and applications are carried out correctly and on time, it makes significant contributions to the effective, efficient and high quality of agricultural production. In addition, the use of technology has become necessary to meet the increasing food demand due to the increase in the world population and the decrease in agricultural areas. The concept of digital agriculture has recently entered our daily lives. Concepts such as digital agriculture, precision agriculture, smart agriculture and Agriculture 5.0 can be mistakenly used interchangeably. This is because each concept contains topics that require expertise in a range of technical disciplines such as mechanical engineering, software engineering, electronics engineering. The concept of digital agriculture is most often confused with precision agriculture technology. When it comes to precision agriculture practices, field agriculture generally comes to mind. The reason for this is that the sensors, devices, equipment and systems developed in precision agriculture technologies are more suitable for field agriculture and precision agriculture is used more intensively in field agriculture. In this study, digital agriculture technologies such as precision agriculture, camera-sensors, remote sensing, IoT, UAV, artificial intelligence-machine learning, agricultural robots, image processing and machine vision used in horticultural cultivation are explained with sample applications.

Kaynakça

  • Adão, T., Hruška, J., Pádua, L., Bessa, J., Peres, E., Morais, R., ve Sousa, J. J. (2017). Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry. Remote Sens., 9, no. 11: 1110. https://doi.org/10.3390/rs9111110
  • Ahmad, L., ve Nabi, F. (2021). Agriculture 5.0: Artificial intelligence, IoT and machine learning. Taylor & Francis Group, LLC. ISBN: 978-0-367-64608-0
  • Altaş, Z., Özgüven, M.M., ve Yanar, Y. (2019). Bitki Hastalık ve Zararlı Düzeylerinin Belirlenmesinde Görüntü İşleme Tekniklerinin Kullanımı: Şeker Pancarı Yaprak Leke Hastalığı Örneği. International Erciyes Agriculture, Animal&Food Sciences Conference 24-27 April 2019- Erciyes University - Kayseri, Turkiye
  • Arjenaki, O.O., Moghaddam, P.A., and Motlagh, A.M. (2013). Online Tomato Sorting Based on Shape, Maturity, Size, and Surface Defects Using Machine Vision. Turk J Agric For. 37: 62-68. doi:10.3906/tar-1201-10
  • Bongiovanni, R., ve Lowenberg-Deboer, J. (2004). Precision Agriculture and Sustainability. Precision Agriculture, 5, 359–387
  • Campos, J., Gallart, M., Llop, J., Ortega, P., Salcedo, R., ve Gil, E. (2020). On-Farm Evaluation of Prescription Map-Based Variable Rate Application of Pesticides in Vineyards. Agronomy. 10(1):102. https://doi.org/10.3390/agronomy10010102
  • Guillemin, P., ve Friess, P. (2009). Internet of Things Strategic Research Roadmap, The Cluster of European Research Projects, Tech. Rep., September 2009. http://www.internet-of-things-research.eu/pdf/IoT Cluster Strategic Research Agenda 2009.pdf. Erişim: tarihi: 01.04.2016
  • Khan, J. Y. (2019). Introduction. In J. Y., Khan ve M. R., Yuce (Editörler), Internet of Things (IoT): Systems and applications. Jenny Stanford Publishing Pte. Ltd. Singapore. ISBN 978-0-429-39908-4
  • Khan, J. Y., ve Yuce, M. R. (2019). Preface. In J. Y., Khan ve M. R., Yuce (Editörler), Internet of Things (IoT): Systems and applications. Jenny Stanford Publishing Pte. Ltd. Singapore. ISBN 978-0-429-39908-4
  • Kumar, J. (2004). http://www.dr-joyanta-kumar-roy.com/study_meterial/Telemetry%20systems/Telemetry%20basics.pdf. Erişim tarihi: 10.04.2021
  • López-Morales, J. A., Martínez, J. A., Caro, M., Erena, M., ve Skarmeta, A. F. (2021). Climate-Aware and IoT-Enabled Selection of the Most Suitable Stone Fruit Tree Variety. Sensors. 21(11):3867. https://doi.org/10.3390/s21113867
  • Millan, B., Velasco-Forero, S., Aquino, A., and Tardaguila, J. (2018). On-the-Go Grapevine Yield Estimation Using Image Analysis and Boolean Model. Hindawi Journal of Sensors. Volume 2018, Article ID 9634752, 14 pages. https://doi.org/10.1155/2018/9634752
  • Nowatzki, J., Andres, R., ve Kyllo, K. (2004). Agricultural Remote Sensing Basics. North Dakota State University Extension Service
  • Osco, L. P., De Arruda, M. S., Gonçalves, D. N., Dias, A., Batistoti, J., De Souza, M., Gomes, F. D. G., Ramos, A. P. M., De Castro Jorge, L. A., Liesenberg, V., Li, J., Ma, L., Marcato, J., ve Gonçalves, W. N. (2021). A CNN Approach to Simultaneously Count Plants and Detect Plantation-Rows from UAV Imagery. ISPRS Journal of Photogrammetry and Remote Sensing. Volume 174, P 1-17, https://doi.org/10.1016/j.isprsjprs.2021.01.024
  • Ozguven, M. M. (2018). The Newest Agricultural Technologies. Current Investigations in Agriculture and Current Research. 5(1), 573-580. DOI: 10.32474/CIACR.2018.05.000201
  • Ozguven, M. M., ve Yanar, Y. (2022). The technology uses in the determination of sugar beet diseases. In V., Misra, S., Srivastava ve A. K., Mall (Editörler), Sugar beet cultivation, management and processing. Springer, Singapore. https://doi.org/10.1007/978-981-19-2730-0_30
  • Ozguven, M. M. (2023). The digital age in agriculture. CRC Press Taylor & Francis Group LLC. ISBN 978-103-23-8577-8
  • Özgüven, M. M. (2018). Hassas tarım. Akfon Yayınları, Ankara. ISBN: 978-605-68762-4-0
  • Özgüven, M. M. (2019). Teknoloji Kavramları ve Farkları. International Erciyes Agriculture, Animal & Food Sciences Conference 24-27 April 2019- Erciyes University – Kayseri, Turkiye
  • Özgüven, M. M., Tan, M., Közkurt, C., Yardım, M. H., Özsoy, M., ve Sabancı, E. (2016). Çok Amaçlı Tarım Robotunun Geliştirilmesi. GOÜ, Ziraat Fakültesi Dergisi, 33 (Ek sayı), 108-116
  • Özgüven, M. M., Türker, U., Akdemir, B., Çolak, A., Acar, A. İ., Öztürk, R., ve Eminoğlu, M. B. (2020). Tarımda Dijital Çağ. Türkiye Ziraat Mühendisliği IX. Teknik Kongresi. Ocak 2020, Ankara. Bildiriler Kitabı-1, s.55-78
  • Özgüven, M. M., ve Közkurt, C. (2021). Agricultural Robots and Smart Agricultural Machinery. International Symposium of Scientific Research and Innovative Studies. 22-25 February 2021. Bandırma-Turkiye. p.81-85. 978-625-44365-8-1
  • Özgüven, M. M., Altaş, Z., Güven, D., ve Çam, A. (2022). Tarımda Drone Kullanımı ve Geleceği. Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 12 (1), 64-83. https://doi.org/10.54370/ordubtd.1097519
  • Pagliai, A., Ammoniaci, M., Sarri, D., Lisci, R., Perria, R., Vieri, M., D’Arcangelo, M. E. M., Storchi, P., ve Kartsiotis, S-P. (2022). Comparison of Aerial and Ground 3D Point Clouds for Canopy Size Assessment in Precision Viticulture. Remote Sens., 14, 1145. https://doi.org/10.3390/rs14051145
  • Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., ve McCool, C. (2016). DeepFruits: A Fruit Detection System Using Deep Neural Networks. Sensors. 16(8):1222. https://doi.org/10.3390/s16081222
  • Sarri, D., Martelloni, L., and Vieri, M. (2017). Development of a Prototype of Telemetry System for Monitoring the Spraying Operation in Vineyards. Computers and Electronics in Agriculture. Volume 142, Part A, Pages 248-259, https://doi.org/10.1016/j.compag.2017.09.018
  • Schoofs, H., Delalieux, S., Deckers, T., ve Bylemans, D. (2020). Fire Blight Monitoring in Pear Orchards by Unmanned Airborne Vehicles (UAV) Systems Carrying Spectral Sensors. Agronomy, 10, no. 5: 615. https://doi.org/10.3390/agronomy10050615
  • RASFF. (2020). The Rapid Alert System for Food and Feed. 2020 Annual Report. Luxembourg: Publications Office of the European Union, 2021. ISBN 978-92-76-34376-9 I
  • Trendov, N. M., Varas, S., ve Zeng, M. (2019). Digital Technologies in Agriculture and Rural Areas. Food and Agriculture Organization of the United Nations, Rome TÜİK. (2022). Bitkisel Üretim İstatistikleri, 2022. Türkiye İstatistik Kurumu Haber Bülteni No:45504. https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2022-45504.Van Henten, E.J., Hemming, J.,
  • Van Tuijl, B.A.J., Kornet, J.G., Meuleman, J., Bontsema, J., ve Van Os, E.A. (2002). An Autonomous Robot for Harvesting Cucumbers in Greenhouses. Autonomous Robots. 13, 241-258. Kluwer Academic Publishers. Manufactured in The Netherlands
  • Van Henten, E.J., Van Tuijl, B.A.J., Hemming, J., Kornet, J.G., Bontsema, J., ve Van Os, E.A. (2003). Field Test of an Autonomous Cucumber Picking Robot. Biosystems Engineering. Volume 86, Issue 3, Pages 305-313, https://doi.org/10.1016/j.biosystemseng.2003.08.002
  • Vatavuk, I., Vasiljević, G., ve Kovačić, Z. (2022). Task Space Model Predictive Control for Vineyard Spraying with a Mobile Manipulator. Agriculture. 12(3):381. https://doi.org/10.3390/agriculture12030381
  • Wosner, O., Farjon, G., ve Bar-Hillel, A. (2021). Object Detection in Agricultural Contexts: A Multiple Resolution Benchmark and Comparison to Human. Computers and Electronics in Agriculture. Volume 189, 106404, https://doi.org/10.1016/j.compag.2021.106404
  • Zheng, A., ve Casari, A. (2018). Feature engineering for machine learning: principles and techniques for data scientists. O’Reilly Media Inc., 978-1-491-95324-2

Bahçe Bitkileri Yetiştiriciliğinde Kullanılan Dijital Tarım Teknolojileri

Yıl 2023, Cilt: 19 Sayı: 3 - Tarım Makinaları Bilimi Dergisi, 19(3), 174 - 193, 27.12.2023

Öz

Tarımsal üretimde bulunan ürün çeşitliliği, yetiştiricilik alanlarının çok çeşitli olması ve yetiştiriciliğin emek yoğun olarak yapılması nedeniyle tarımsal faaliyetler sırasında birçok sorunla karşılaşılmaktadır. Tarımsal üretim ve yetiştiricilik sırasında hastalık, zararlı, ekonomik kriz, kuraklık, dolu, sel gibi çok çeşitli zorluk ve belirsizlikle mücadele edilmektedir. Teknolojinin sunduğu teknik imkanlar, birçok tarımsal işlemin kolaylaştırılmasını, mevcut bazı sorunlara alternatif çözümler getirmesini ve özellikle üretim ve uygulamaların doğru ve zamanında yapılmasını sağlamasıyla, tarımsal üretimin etkin, verimli ve kaliteli yapılmasına önemli katkılar sağlamaktadır. Ayrıca dünya nüfusunun artması ve tarımsal alanların azalmasına bağlı olarak artan gıda talebinin karşılanması için teknoloji kullanımı zorunlu hale gelmiştir. Dijital tarım kavramı günlük hayatımıza yakın bir zamanda girmiştir. Dijital tarım, hassas tarım, akıllı tarım ve Tarım 5.0 gibi kavramlar yanlışlıkla birbirleri yerine kullanılabilmektedir. Bunun nedeni, herbir kavramda makine mühendisliği, yazılım mühendisliği, elektronik mühendisliği gibi bir dizi teknik disiplinde uzmanlık gerektiren konuların bulunmasıdır. Dijital tarım kavramı en çok hassas tarım teknolojisi ile karıştırılmaktadır. Hassas tarım uygulamaları denildiğinde ise genelde akla tarla tarımı gelmektektedir. Bunun sebebi hassas tarım teknolojilerinde geliştirilen sensör, cihaz, ekipman ve sistemlerin tarla tarımına daha uygun olması ve hassas tarımın tarla tarımında daha yoğun kullanılmasıdır. Bu çalışmada, bahçe bitkileri yetiştiriciliğinde kullanılan hassas tarım, kamera-sensörler, uzaktan algılama, IoT, İHA, yapay zeka-makine öğrenmesi, tarım robotları, görüntü işleme ve makine görüsü gibi dijital tarım teknolojileri örnek uygulamalarla açıklanmıştır.

Kaynakça

  • Adão, T., Hruška, J., Pádua, L., Bessa, J., Peres, E., Morais, R., ve Sousa, J. J. (2017). Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry. Remote Sens., 9, no. 11: 1110. https://doi.org/10.3390/rs9111110
  • Ahmad, L., ve Nabi, F. (2021). Agriculture 5.0: Artificial intelligence, IoT and machine learning. Taylor & Francis Group, LLC. ISBN: 978-0-367-64608-0
  • Altaş, Z., Özgüven, M.M., ve Yanar, Y. (2019). Bitki Hastalık ve Zararlı Düzeylerinin Belirlenmesinde Görüntü İşleme Tekniklerinin Kullanımı: Şeker Pancarı Yaprak Leke Hastalığı Örneği. International Erciyes Agriculture, Animal&Food Sciences Conference 24-27 April 2019- Erciyes University - Kayseri, Turkiye
  • Arjenaki, O.O., Moghaddam, P.A., and Motlagh, A.M. (2013). Online Tomato Sorting Based on Shape, Maturity, Size, and Surface Defects Using Machine Vision. Turk J Agric For. 37: 62-68. doi:10.3906/tar-1201-10
  • Bongiovanni, R., ve Lowenberg-Deboer, J. (2004). Precision Agriculture and Sustainability. Precision Agriculture, 5, 359–387
  • Campos, J., Gallart, M., Llop, J., Ortega, P., Salcedo, R., ve Gil, E. (2020). On-Farm Evaluation of Prescription Map-Based Variable Rate Application of Pesticides in Vineyards. Agronomy. 10(1):102. https://doi.org/10.3390/agronomy10010102
  • Guillemin, P., ve Friess, P. (2009). Internet of Things Strategic Research Roadmap, The Cluster of European Research Projects, Tech. Rep., September 2009. http://www.internet-of-things-research.eu/pdf/IoT Cluster Strategic Research Agenda 2009.pdf. Erişim: tarihi: 01.04.2016
  • Khan, J. Y. (2019). Introduction. In J. Y., Khan ve M. R., Yuce (Editörler), Internet of Things (IoT): Systems and applications. Jenny Stanford Publishing Pte. Ltd. Singapore. ISBN 978-0-429-39908-4
  • Khan, J. Y., ve Yuce, M. R. (2019). Preface. In J. Y., Khan ve M. R., Yuce (Editörler), Internet of Things (IoT): Systems and applications. Jenny Stanford Publishing Pte. Ltd. Singapore. ISBN 978-0-429-39908-4
  • Kumar, J. (2004). http://www.dr-joyanta-kumar-roy.com/study_meterial/Telemetry%20systems/Telemetry%20basics.pdf. Erişim tarihi: 10.04.2021
  • López-Morales, J. A., Martínez, J. A., Caro, M., Erena, M., ve Skarmeta, A. F. (2021). Climate-Aware and IoT-Enabled Selection of the Most Suitable Stone Fruit Tree Variety. Sensors. 21(11):3867. https://doi.org/10.3390/s21113867
  • Millan, B., Velasco-Forero, S., Aquino, A., and Tardaguila, J. (2018). On-the-Go Grapevine Yield Estimation Using Image Analysis and Boolean Model. Hindawi Journal of Sensors. Volume 2018, Article ID 9634752, 14 pages. https://doi.org/10.1155/2018/9634752
  • Nowatzki, J., Andres, R., ve Kyllo, K. (2004). Agricultural Remote Sensing Basics. North Dakota State University Extension Service
  • Osco, L. P., De Arruda, M. S., Gonçalves, D. N., Dias, A., Batistoti, J., De Souza, M., Gomes, F. D. G., Ramos, A. P. M., De Castro Jorge, L. A., Liesenberg, V., Li, J., Ma, L., Marcato, J., ve Gonçalves, W. N. (2021). A CNN Approach to Simultaneously Count Plants and Detect Plantation-Rows from UAV Imagery. ISPRS Journal of Photogrammetry and Remote Sensing. Volume 174, P 1-17, https://doi.org/10.1016/j.isprsjprs.2021.01.024
  • Ozguven, M. M. (2018). The Newest Agricultural Technologies. Current Investigations in Agriculture and Current Research. 5(1), 573-580. DOI: 10.32474/CIACR.2018.05.000201
  • Ozguven, M. M., ve Yanar, Y. (2022). The technology uses in the determination of sugar beet diseases. In V., Misra, S., Srivastava ve A. K., Mall (Editörler), Sugar beet cultivation, management and processing. Springer, Singapore. https://doi.org/10.1007/978-981-19-2730-0_30
  • Ozguven, M. M. (2023). The digital age in agriculture. CRC Press Taylor & Francis Group LLC. ISBN 978-103-23-8577-8
  • Özgüven, M. M. (2018). Hassas tarım. Akfon Yayınları, Ankara. ISBN: 978-605-68762-4-0
  • Özgüven, M. M. (2019). Teknoloji Kavramları ve Farkları. International Erciyes Agriculture, Animal & Food Sciences Conference 24-27 April 2019- Erciyes University – Kayseri, Turkiye
  • Özgüven, M. M., Tan, M., Közkurt, C., Yardım, M. H., Özsoy, M., ve Sabancı, E. (2016). Çok Amaçlı Tarım Robotunun Geliştirilmesi. GOÜ, Ziraat Fakültesi Dergisi, 33 (Ek sayı), 108-116
  • Özgüven, M. M., Türker, U., Akdemir, B., Çolak, A., Acar, A. İ., Öztürk, R., ve Eminoğlu, M. B. (2020). Tarımda Dijital Çağ. Türkiye Ziraat Mühendisliği IX. Teknik Kongresi. Ocak 2020, Ankara. Bildiriler Kitabı-1, s.55-78
  • Özgüven, M. M., ve Közkurt, C. (2021). Agricultural Robots and Smart Agricultural Machinery. International Symposium of Scientific Research and Innovative Studies. 22-25 February 2021. Bandırma-Turkiye. p.81-85. 978-625-44365-8-1
  • Özgüven, M. M., Altaş, Z., Güven, D., ve Çam, A. (2022). Tarımda Drone Kullanımı ve Geleceği. Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 12 (1), 64-83. https://doi.org/10.54370/ordubtd.1097519
  • Pagliai, A., Ammoniaci, M., Sarri, D., Lisci, R., Perria, R., Vieri, M., D’Arcangelo, M. E. M., Storchi, P., ve Kartsiotis, S-P. (2022). Comparison of Aerial and Ground 3D Point Clouds for Canopy Size Assessment in Precision Viticulture. Remote Sens., 14, 1145. https://doi.org/10.3390/rs14051145
  • Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., ve McCool, C. (2016). DeepFruits: A Fruit Detection System Using Deep Neural Networks. Sensors. 16(8):1222. https://doi.org/10.3390/s16081222
  • Sarri, D., Martelloni, L., and Vieri, M. (2017). Development of a Prototype of Telemetry System for Monitoring the Spraying Operation in Vineyards. Computers and Electronics in Agriculture. Volume 142, Part A, Pages 248-259, https://doi.org/10.1016/j.compag.2017.09.018
  • Schoofs, H., Delalieux, S., Deckers, T., ve Bylemans, D. (2020). Fire Blight Monitoring in Pear Orchards by Unmanned Airborne Vehicles (UAV) Systems Carrying Spectral Sensors. Agronomy, 10, no. 5: 615. https://doi.org/10.3390/agronomy10050615
  • RASFF. (2020). The Rapid Alert System for Food and Feed. 2020 Annual Report. Luxembourg: Publications Office of the European Union, 2021. ISBN 978-92-76-34376-9 I
  • Trendov, N. M., Varas, S., ve Zeng, M. (2019). Digital Technologies in Agriculture and Rural Areas. Food and Agriculture Organization of the United Nations, Rome TÜİK. (2022). Bitkisel Üretim İstatistikleri, 2022. Türkiye İstatistik Kurumu Haber Bülteni No:45504. https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2022-45504.Van Henten, E.J., Hemming, J.,
  • Van Tuijl, B.A.J., Kornet, J.G., Meuleman, J., Bontsema, J., ve Van Os, E.A. (2002). An Autonomous Robot for Harvesting Cucumbers in Greenhouses. Autonomous Robots. 13, 241-258. Kluwer Academic Publishers. Manufactured in The Netherlands
  • Van Henten, E.J., Van Tuijl, B.A.J., Hemming, J., Kornet, J.G., Bontsema, J., ve Van Os, E.A. (2003). Field Test of an Autonomous Cucumber Picking Robot. Biosystems Engineering. Volume 86, Issue 3, Pages 305-313, https://doi.org/10.1016/j.biosystemseng.2003.08.002
  • Vatavuk, I., Vasiljević, G., ve Kovačić, Z. (2022). Task Space Model Predictive Control for Vineyard Spraying with a Mobile Manipulator. Agriculture. 12(3):381. https://doi.org/10.3390/agriculture12030381
  • Wosner, O., Farjon, G., ve Bar-Hillel, A. (2021). Object Detection in Agricultural Contexts: A Multiple Resolution Benchmark and Comparison to Human. Computers and Electronics in Agriculture. Volume 189, 106404, https://doi.org/10.1016/j.compag.2021.106404
  • Zheng, A., ve Casari, A. (2018). Feature engineering for machine learning: principles and techniques for data scientists. O’Reilly Media Inc., 978-1-491-95324-2
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hassas Tarım Teknolojileri
Bölüm Makaleler
Yazarlar

Mehmet Metin Özgüven 0000-0002-6421-4804

Erken Görünüm Tarihi 27 Aralık 2023
Yayımlanma Tarihi 27 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 19 Sayı: 3 - Tarım Makinaları Bilimi Dergisi, 19(3)

Kaynak Göster

APA Özgüven, M. M. (2023). Bahçe Bitkileri Yetiştiriciliğinde Kullanılan Dijital Tarım Teknolojileri. Tarım Makinaları Bilimi Dergisi, 19(3), 174-193.

Tarım Makinaları Bilimi Dergisi, Tarım Makinaları Derneği tarafından yılda 3 sayı olarak yayınlanan hakemli bilimsel bir dergidir.