Araştırma Makalesi
BibTex RIS Kaynak Göster

Toprak sıkışması ve sınırlayıcı su aralığı üzerine farklı organik materyallerin etkileri

Yıl 2020, Cilt: 8 Sayı: 2, 118 - 127, 30.12.2020
https://doi.org/10.33409/tbbbd.778834

Öz

Toprak sıkışması ve buna bağlı toprağın gözenek yapısının değişimi, tarımsal sürdürebilirliği ve bitkisel verimi olumsuz yönde etkilemektedir. Bu olumsuz etkinin azaltılması için çeşitli amenajman uygulamalarının yanında, toprakların organik madde içeriklerinin artırılması önemli bir yer tutmaktadır. Ayrıca son yıllarda, toprak sıkışmasının toprağın fiziksel kalitesine etkisini belirlemede sınırlayıcı su aralığı (SSA) kullanılmaya başlanmıştır. Yapılan bu çalışmada, yüksek sıkışma potansiyeline sahip kil tekstür sınıfına sahip bir toprağa, ağırlıkça %0, 0.5, 1.0, 2.0 ve 4.0 oranlarında uygulanan sığır gübresi (SG), biyokömür (BK) ve kompostun (KO), altmış günlük inkübasyon sonunda, standart proktor testinde maksimum düzeyde sıkıştırılan örneklerin hacim ağırlığı (HA), toplam gözenekliliği (TG), tarla kapasitesi (TK), solma noktası (SN), faydalı su kapasitesi (FS) ve SSA üzerine etkileri belirlenmiştir. Buna göre, kontrol (K) örneği ile kıyaslandığında SG, BK ve KO uygulama dozlarındaki artış ile ters orantılı olarak toprağın maksimum HA değerleri azalmış ve TG değerleri ise artış göstermiş, %4 SG, BK ve KO uygulama dozlarında HA değerleri kontrole göre sırasıyla; %12.93, 11.56 ve 14.28 oranında düşerken, TG değerleri de sırasıyla; % 16.18, 14.38 ve 17.98 oranlarında artış göstermiştir. Ayrıca SSA’ nın alt ve üst limitleri uygulamalara bağlı olarak önemli değişkenlikler göstermiş, kullanılan organik materyallerin dozlarındaki artış ile önemli artışlar ölçülmüştür. SSA’ da en yüksek artış kompost uygulamasında %4 dozunda tespit edilmiştir. Buna göre sıkışma eğilimi yüksek ve fiziksel kalitesi düşük olan bir toprağa uygulanan her üç organik materyal de çalışma şartlarında toprağın sıkışma eğilimini azaltarak SSA’ yı genişletmiş ve toprağın fiziksel kalitesini yükseltmiştir.

Kaynakça

  • Akpınar Ç, 2018, Farklı Organik Gübre Uygulamalarının Mısır Bitkisinin Gelişimi ve Besin Elementleri Alımına Etkileri. Alatarım, 33.
  • Alaboz P, Öz H, 2020. Biyokömür ve Solarizasyon Uygulamalarının Bazı Toprak Fiziksel Özellikler Üzerine Etkileri. Anadolu Tarım Bilimleri Dergis.i 35.2: 208-214.
  • Baver L, 1949. Practical values from physical analyses of soils. Soil science. 68 (1): 1-14.
  • Benjamin J, Nielsen D, ve Vigil M, 2003. Quantifying effects of soil conditions on plant growth and crop production. Geoderma. 116 (1-2): 137-148.
  • Blake GR, Hartge K, 1986. Bulk density. Methods of soil analysis: Part 1 Physical and mineralogical methods. vol. 5. pp.363-375.
  • Bulmer C, Simpson D, 2005. Soil compaction and water content as factors affecting the growth of lodgepole pine seedlings on sandy clay loam soil. Canadian Journal of Soil Science, 85 (5): 667-679.
  • Cassel D, Nielsen D, 1986. Field capacity and available water capacity. Methods of soil analysis: Part 1 Physical and mineralogical methods. vol. 5. pp. 901-926.
  • Chan K, Oates A, Swan A, Hayes R, Dear B, Peoples M, 2006. Agronomic consequences of tractor wheel compaction on a clay soil. Soil and Tillage Research. 89 (1): 13-21.
  • Chen G, Weil RR, Hill RL, 2014. Effects of compaction and cover crops on soil least limiting water range and air permeability. Soil and Tillage Research 136: 61-69.
  • Çetin A, 2018. Toprak nemi ve hacim ağırlığının penetrasyon direncine etkisi. Yüksek Lisans Tezi Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.
  • Da Silva A, Kay B, Perfect E, 1994. Characterization of the least limiting water range of soils. Soil Science Society of America Journal. 58 (6): 1775-1781.
  • Da Silva AP, Kay B, 1997. Effect of soil water content variation on the least limiting water range. Soil Science Society of America Journal. 61 (3): 884-888.
  • Da Silva AP, Kay B, 2004. Linking process capability analysis and least limiting water range for assessing soil physical quality. Soil and Tillage Research. 79 (2): 167-174.
  • Dalvan R, Richard W, Birl L, Francisco A, 2002. Compaction effects on least limiting water range and plant growth. 17. World congress of soil science, 14-21 August, Bangkok (Thailand),
  • De Lima RP, Keller T, Giarola NB, Tormena CA, Da Silva AR, Rolim MM, 2020. Measurements and simulations of compaction effects on the least limiting water range of a no-till Oxisol. Soil Research. 58 (1): 62-72.
  • Drury C, Zhang T, Kay B, 2003. The non‐limiting and least limiting water ranges for soil nitrogen mineralization. Soil Science Society of America Journal. 67 (5): 1388-1404.
  • Gee G, Bauder J, 1986. Particle-size analysis. In A. Klute (ed.) Methods of soil analysis. Part 1. Agron. Monogr. 9. ASA and SSSA, Madison, WI, Particle-size analysis. . pp. 383–411.
  • Grable AR, Siemer E, 1968. Effects of bulk density, aggregate size, and soil water suction on oxygen diffusion, redox potentials, and elongation of corn roots. Soil Science Society of America Journal. 32 (2): 180-186.
  • Guedes Filho O, Blanco-Canqui H. Da Silva A, 2013. Least limiting water range of the soil seedbed for long-term tillage and cropping systems in the central Great Plains USA. Geoderma. 207: 99-110.
  • Gugino BK, Abawi GS, Idowu OJ, Schindelbeck RR, Smith LL, Thies JE, Wolfe DW, Van Es HM, 2009. Cornell soil health assessment training manual. Cornell University College of Agriculture and Life Sciences.
  • Hakansson I, 1990. A method for characterizing the state of compactness of the plough layer. Soil and Tillage Research. 16 (1-2): 105-120.
  • Hill R, 1990. Long‐term conventional and no‐tillage effects on selected soil physical properties. Soil Science Society of America Journal. 54 (1): 161-166.
  • Horn R, Domzzal H, Slowinska-Jurkiewicz A, Van Ouwerkerk C, 1995, Soil compaction processes and their effects on the structure of arable soils and the environment. Soil and Tillage Research, 35 (1-2), 23-36.
  • Horn R, 2004. Time dependence of soil mechanical properties and pore functions for arable soils. Soil Science Society of America Journal. 68 (4): 1131-1137.
  • Kay B, Silva Ad, Baldock J, 1997. Sensitivity of soil structure to changes in organic carbon content: predictions using pedotransfer functions. Canadian Journal of Soil Science. 77 (4): 655-667.
  • Kay B, Hajabbasi M, Ying J, Tollenaar M, 2006. Optimum versus non-limiting water contents for root growth, biomass accumulation, gas exchange and the rate of development of maize (Zea mays L.). Soil and Tillage Research. 88 (1-2): 42-54.
  • Kunz M, Gonçalves A D M d A, Reichert JM, Guimaraes R M L, Reinert D J, Rodrigues M F, 2013. Compactação do solo na integração soja-pecuária de leite em Latossolo argiloso com semeadura direta e escarificação. Revista Brasileira de Ciência do Solo. 37 (6): 1699-1708.
  • Lapen D, Topp G, Gregorich E, Curnoe W, 2004. Least limiting water range indicators of soil quality and corn production, eastern Ontario, Canada. Soil and Tillage Research. 78 (2): 151-170.
  • Letey J, 1958. Relationship between soil physical properties and crop production. In: Advances in soil science. Eds: Springer. pp. 277-294.
  • Lipiec J, Hatano R, 2003. Quantification of compaction effects on soil physical properties and crop growth. Geoderma. 116 (1-2), 107-136.
  • Lipiec J, Horn R, Pietrusiewicz J, Siczek A, 2012. Effects of soil compaction on root elongation and anatomy of different cereal plant species. Soil and Tillage Research. 121, 74-81.
  • Major J, Steiner C, Downie A, Lehmann J, Joseph S, 2009. Biochar effects on nutrient leaching. Biochar for environmental management: Science and technology. pp. 271.
  • McLean E, 1983. Soil pH and lime requirement. Methods of soil analysis: Part 2 Chemical and microbiological properties. 9: 199-224.
  • Mertoğlu S, 1982. Toprak Mekaniği Laboratuarı El Kitabı. TC Köyişleri ve Kooperatifler Bakanlığı. Topraksu Genel Müd. Yayın No: 713.
  • Reichert JM, Suzuki L E A S, Reinert D J, Horn R, Hakansson I, 2009. Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil and Tillage Research. 102 (2): 242- 254.
  • Safadoust A, Feizee P, Mahboubi A, Gharabaghi B, Mosaddeghi M, Ahrens B, 2014. Least limiting water range as affected by soil texture and cropping system. Agricultural Water Management. 136: 34-41.
  • Taylor H M, Roberson GM, Parker Jr J J, 1966. Soil strength-root penetration relations for medium-to coarse-textured soil materials. Soil science. 102 (1): 18-22.
  • Tormena C, Silva A d, Libardi P, 1998. Caracterização do intervalo hídrico ótimo de um Latossolo Roxo sob plantio direto, Revista Brasileira de Ciência do Solo. 22 (4): 573-581.
  • Tormena C A, da Silva A P, Libardi P L, 1999. Soil physical quality of a Brazilian Oxisol under two tillage systems using the least limiting water range approach. Soil and Tillage Research. 52 (3-4): 223-232.
  • Turgut B, Öztaş T, 2012. Penetrasyon direncini etkileyen bazı toprak özelliklerinin yersel değişiminin belirlenmesi. Journal of Agricultural Sciences. 18 (12).
  • Veihmeyer F, Hendrickson A, 1950. Soil moisture in relation to plant growth. Annual review of plant physiology. 1 (1): 285-304.
  • Vomocil J, Flocker W, 1961. Effect of soil compaction on storage and movement of soil air and water. Trans. Am. Soc. Agric. Eng.: 4.
  • Wright A F, Bailey J S, 2001. Organic carbon, total carbon, and total nitrogen determinations in soils of variable calcium carbonate contents using a Leco CN-2000 dry combustion analyzer. Communications in Soil Science and Plant Analysis. 32 (19-20): 3243-3258.
  • Wu L, Feng G, Letey J, Ferguson L, Mitchell J, McCullough-Sanden B, Markegard G, 2003. Soil management effects on the nonlimiting water range. Geoderma. 114 (3-4): 401-414.
  • Yang C, D, Lu S, G, 2020. Effects of five different biochars on aggregation, water retention and mechanical properties of paddy soil: A field experiment of three-season crops. Soil and Tillage Research. 205, 104798.
  • Zou C, Sands R, Buchan G, Hudson I, 2000. Least limiting water range: a potential indicator of physical quality of forest soils. Soil Research. 38 (5): 947-958.

Effects of different organic materials on soil compaction and least limiting water range Abstract

Yıl 2020, Cilt: 8 Sayı: 2, 118 - 127, 30.12.2020
https://doi.org/10.33409/tbbbd.778834

Öz

Soil compaction and its associated change of the pore structure of the soil negatively affect agricultural sustainability and crop yield. In order to reduce this negative effect, it is important to increase soil organic matter content as well as applying various soil management practices. In addition, in the recent years, least limiting water range (LLWR) has been started to be used in the determination of the effect of soil compaction on the soil physical quality. In this conducted study, cattle manure (CM), biochar (BK) and compost (CO) were
applied at 0, 0.5, 1.0, 2.0 and 4.0 % by weight to a clay textured soil with a high compaction potential. Soils treated with amendments were incubated for 60 days and thereafter subjected to standard proctor test. By using the proctor test, the effects of maximum level of compacted samples on bulk density (BD), total porosity (TP), field capacity (FC), wilting point (WP), available water capacity (AWC) and LLWR were determined. Accordingly, when compared with the control (C) sample, the maximum BD values of the soil inversely
decreased with the increase in CM, BK and CO application doses while TP values experienced an upward trend. At 4% of CM, BK and CO application doses, BD values respectively decreased by 12.93%, 11.56 and 14.28%, while TP values respectively increased by 16.18, 14.38 and 17.98% compared with the control. In addition, the lower and upper limits of LLWR showed significant variations depending on the applications, and significant upward trend, following the increase in the applied doses of the organic materials were demonstrated. The highest increase in least limiting water range was found in the compost applied at 4%. Accordingly, all three organic
materials applied to a soil with a high compaction tendency and low physical expanded SSA and improved soil physical quality through reducing soil compaction tendency in the study area.

Kaynakça

  • Akpınar Ç, 2018, Farklı Organik Gübre Uygulamalarının Mısır Bitkisinin Gelişimi ve Besin Elementleri Alımına Etkileri. Alatarım, 33.
  • Alaboz P, Öz H, 2020. Biyokömür ve Solarizasyon Uygulamalarının Bazı Toprak Fiziksel Özellikler Üzerine Etkileri. Anadolu Tarım Bilimleri Dergis.i 35.2: 208-214.
  • Baver L, 1949. Practical values from physical analyses of soils. Soil science. 68 (1): 1-14.
  • Benjamin J, Nielsen D, ve Vigil M, 2003. Quantifying effects of soil conditions on plant growth and crop production. Geoderma. 116 (1-2): 137-148.
  • Blake GR, Hartge K, 1986. Bulk density. Methods of soil analysis: Part 1 Physical and mineralogical methods. vol. 5. pp.363-375.
  • Bulmer C, Simpson D, 2005. Soil compaction and water content as factors affecting the growth of lodgepole pine seedlings on sandy clay loam soil. Canadian Journal of Soil Science, 85 (5): 667-679.
  • Cassel D, Nielsen D, 1986. Field capacity and available water capacity. Methods of soil analysis: Part 1 Physical and mineralogical methods. vol. 5. pp. 901-926.
  • Chan K, Oates A, Swan A, Hayes R, Dear B, Peoples M, 2006. Agronomic consequences of tractor wheel compaction on a clay soil. Soil and Tillage Research. 89 (1): 13-21.
  • Chen G, Weil RR, Hill RL, 2014. Effects of compaction and cover crops on soil least limiting water range and air permeability. Soil and Tillage Research 136: 61-69.
  • Çetin A, 2018. Toprak nemi ve hacim ağırlığının penetrasyon direncine etkisi. Yüksek Lisans Tezi Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.
  • Da Silva A, Kay B, Perfect E, 1994. Characterization of the least limiting water range of soils. Soil Science Society of America Journal. 58 (6): 1775-1781.
  • Da Silva AP, Kay B, 1997. Effect of soil water content variation on the least limiting water range. Soil Science Society of America Journal. 61 (3): 884-888.
  • Da Silva AP, Kay B, 2004. Linking process capability analysis and least limiting water range for assessing soil physical quality. Soil and Tillage Research. 79 (2): 167-174.
  • Dalvan R, Richard W, Birl L, Francisco A, 2002. Compaction effects on least limiting water range and plant growth. 17. World congress of soil science, 14-21 August, Bangkok (Thailand),
  • De Lima RP, Keller T, Giarola NB, Tormena CA, Da Silva AR, Rolim MM, 2020. Measurements and simulations of compaction effects on the least limiting water range of a no-till Oxisol. Soil Research. 58 (1): 62-72.
  • Drury C, Zhang T, Kay B, 2003. The non‐limiting and least limiting water ranges for soil nitrogen mineralization. Soil Science Society of America Journal. 67 (5): 1388-1404.
  • Gee G, Bauder J, 1986. Particle-size analysis. In A. Klute (ed.) Methods of soil analysis. Part 1. Agron. Monogr. 9. ASA and SSSA, Madison, WI, Particle-size analysis. . pp. 383–411.
  • Grable AR, Siemer E, 1968. Effects of bulk density, aggregate size, and soil water suction on oxygen diffusion, redox potentials, and elongation of corn roots. Soil Science Society of America Journal. 32 (2): 180-186.
  • Guedes Filho O, Blanco-Canqui H. Da Silva A, 2013. Least limiting water range of the soil seedbed for long-term tillage and cropping systems in the central Great Plains USA. Geoderma. 207: 99-110.
  • Gugino BK, Abawi GS, Idowu OJ, Schindelbeck RR, Smith LL, Thies JE, Wolfe DW, Van Es HM, 2009. Cornell soil health assessment training manual. Cornell University College of Agriculture and Life Sciences.
  • Hakansson I, 1990. A method for characterizing the state of compactness of the plough layer. Soil and Tillage Research. 16 (1-2): 105-120.
  • Hill R, 1990. Long‐term conventional and no‐tillage effects on selected soil physical properties. Soil Science Society of America Journal. 54 (1): 161-166.
  • Horn R, Domzzal H, Slowinska-Jurkiewicz A, Van Ouwerkerk C, 1995, Soil compaction processes and their effects on the structure of arable soils and the environment. Soil and Tillage Research, 35 (1-2), 23-36.
  • Horn R, 2004. Time dependence of soil mechanical properties and pore functions for arable soils. Soil Science Society of America Journal. 68 (4): 1131-1137.
  • Kay B, Silva Ad, Baldock J, 1997. Sensitivity of soil structure to changes in organic carbon content: predictions using pedotransfer functions. Canadian Journal of Soil Science. 77 (4): 655-667.
  • Kay B, Hajabbasi M, Ying J, Tollenaar M, 2006. Optimum versus non-limiting water contents for root growth, biomass accumulation, gas exchange and the rate of development of maize (Zea mays L.). Soil and Tillage Research. 88 (1-2): 42-54.
  • Kunz M, Gonçalves A D M d A, Reichert JM, Guimaraes R M L, Reinert D J, Rodrigues M F, 2013. Compactação do solo na integração soja-pecuária de leite em Latossolo argiloso com semeadura direta e escarificação. Revista Brasileira de Ciência do Solo. 37 (6): 1699-1708.
  • Lapen D, Topp G, Gregorich E, Curnoe W, 2004. Least limiting water range indicators of soil quality and corn production, eastern Ontario, Canada. Soil and Tillage Research. 78 (2): 151-170.
  • Letey J, 1958. Relationship between soil physical properties and crop production. In: Advances in soil science. Eds: Springer. pp. 277-294.
  • Lipiec J, Hatano R, 2003. Quantification of compaction effects on soil physical properties and crop growth. Geoderma. 116 (1-2), 107-136.
  • Lipiec J, Horn R, Pietrusiewicz J, Siczek A, 2012. Effects of soil compaction on root elongation and anatomy of different cereal plant species. Soil and Tillage Research. 121, 74-81.
  • Major J, Steiner C, Downie A, Lehmann J, Joseph S, 2009. Biochar effects on nutrient leaching. Biochar for environmental management: Science and technology. pp. 271.
  • McLean E, 1983. Soil pH and lime requirement. Methods of soil analysis: Part 2 Chemical and microbiological properties. 9: 199-224.
  • Mertoğlu S, 1982. Toprak Mekaniği Laboratuarı El Kitabı. TC Köyişleri ve Kooperatifler Bakanlığı. Topraksu Genel Müd. Yayın No: 713.
  • Reichert JM, Suzuki L E A S, Reinert D J, Horn R, Hakansson I, 2009. Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil and Tillage Research. 102 (2): 242- 254.
  • Safadoust A, Feizee P, Mahboubi A, Gharabaghi B, Mosaddeghi M, Ahrens B, 2014. Least limiting water range as affected by soil texture and cropping system. Agricultural Water Management. 136: 34-41.
  • Taylor H M, Roberson GM, Parker Jr J J, 1966. Soil strength-root penetration relations for medium-to coarse-textured soil materials. Soil science. 102 (1): 18-22.
  • Tormena C, Silva A d, Libardi P, 1998. Caracterização do intervalo hídrico ótimo de um Latossolo Roxo sob plantio direto, Revista Brasileira de Ciência do Solo. 22 (4): 573-581.
  • Tormena C A, da Silva A P, Libardi P L, 1999. Soil physical quality of a Brazilian Oxisol under two tillage systems using the least limiting water range approach. Soil and Tillage Research. 52 (3-4): 223-232.
  • Turgut B, Öztaş T, 2012. Penetrasyon direncini etkileyen bazı toprak özelliklerinin yersel değişiminin belirlenmesi. Journal of Agricultural Sciences. 18 (12).
  • Veihmeyer F, Hendrickson A, 1950. Soil moisture in relation to plant growth. Annual review of plant physiology. 1 (1): 285-304.
  • Vomocil J, Flocker W, 1961. Effect of soil compaction on storage and movement of soil air and water. Trans. Am. Soc. Agric. Eng.: 4.
  • Wright A F, Bailey J S, 2001. Organic carbon, total carbon, and total nitrogen determinations in soils of variable calcium carbonate contents using a Leco CN-2000 dry combustion analyzer. Communications in Soil Science and Plant Analysis. 32 (19-20): 3243-3258.
  • Wu L, Feng G, Letey J, Ferguson L, Mitchell J, McCullough-Sanden B, Markegard G, 2003. Soil management effects on the nonlimiting water range. Geoderma. 114 (3-4): 401-414.
  • Yang C, D, Lu S, G, 2020. Effects of five different biochars on aggregation, water retention and mechanical properties of paddy soil: A field experiment of three-season crops. Soil and Tillage Research. 205, 104798.
  • Zou C, Sands R, Buchan G, Hudson I, 2000. Least limiting water range: a potential indicator of physical quality of forest soils. Soil Research. 38 (5): 947-958.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat Mühendisliği
Bölüm Makaleler
Yazarlar

Hamza Negiş 0000-0002-1880-9188

Cevdet Şeker 0000-0002-8760-6990

Ayşe Çetin

Yayımlanma Tarihi 30 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 8 Sayı: 2

Kaynak Göster

APA Negiş, H., Şeker, C., & Çetin, A. (2020). Toprak sıkışması ve sınırlayıcı su aralığı üzerine farklı organik materyallerin etkileri. Toprak Bilimi Ve Bitki Besleme Dergisi, 8(2), 118-127. https://doi.org/10.33409/tbbbd.778834
AMA Negiş H, Şeker C, Çetin A. Toprak sıkışması ve sınırlayıcı su aralığı üzerine farklı organik materyallerin etkileri. tbbbd. Aralık 2020;8(2):118-127. doi:10.33409/tbbbd.778834
Chicago Negiş, Hamza, Cevdet Şeker, ve Ayşe Çetin. “Toprak sıkışması Ve sınırlayıcı Su aralığı üzerine Farklı Organik Materyallerin Etkileri”. Toprak Bilimi Ve Bitki Besleme Dergisi 8, sy. 2 (Aralık 2020): 118-27. https://doi.org/10.33409/tbbbd.778834.
EndNote Negiş H, Şeker C, Çetin A (01 Aralık 2020) Toprak sıkışması ve sınırlayıcı su aralığı üzerine farklı organik materyallerin etkileri. Toprak Bilimi ve Bitki Besleme Dergisi 8 2 118–127.
IEEE H. Negiş, C. Şeker, ve A. Çetin, “Toprak sıkışması ve sınırlayıcı su aralığı üzerine farklı organik materyallerin etkileri”, tbbbd, c. 8, sy. 2, ss. 118–127, 2020, doi: 10.33409/tbbbd.778834.
ISNAD Negiş, Hamza vd. “Toprak sıkışması Ve sınırlayıcı Su aralığı üzerine Farklı Organik Materyallerin Etkileri”. Toprak Bilimi ve Bitki Besleme Dergisi 8/2 (Aralık 2020), 118-127. https://doi.org/10.33409/tbbbd.778834.
JAMA Negiş H, Şeker C, Çetin A. Toprak sıkışması ve sınırlayıcı su aralığı üzerine farklı organik materyallerin etkileri. tbbbd. 2020;8:118–127.
MLA Negiş, Hamza vd. “Toprak sıkışması Ve sınırlayıcı Su aralığı üzerine Farklı Organik Materyallerin Etkileri”. Toprak Bilimi Ve Bitki Besleme Dergisi, c. 8, sy. 2, 2020, ss. 118-27, doi:10.33409/tbbbd.778834.
Vancouver Negiş H, Şeker C, Çetin A. Toprak sıkışması ve sınırlayıcı su aralığı üzerine farklı organik materyallerin etkileri. tbbbd. 2020;8(2):118-27.