Derleme
BibTex RIS Kaynak Göster

The effects of microplastics on the soil ecosystem

Yıl 2021, Cilt: 9 Sayı: 2, 79 - 91, 27.12.2021
https://doi.org/10.33409/tbbbd.997807

Öz

Microplastics (MPs) are emerging pollutants yet recently there has been substantial attention on them since their presence on soil and water environments pose a great threat to all ecosystems. While the adverse effects of MPs on aquatic ecosystems are often expressed, large amounts of MP presence were reported in almost all marine ecosystems. Moreover, the increase in plastic materials in global scope, inappropriate plastic waste management, and lack of specification in the strategies over their disposal led to the increased MP contamination in terrestrial ecosystems. The effects of MPs in terrestrial environments have not yet been fully determined. Microplastic particles (<1 mm - 5mm) can be incorporated into the soil ecosystem either directly with applications such as sewage sludge, irrigation water or atmospheric deposition, etc. or indirectly via the disintegration of bigger plastic particles (plastic mulch materials) in situ with climatic factors. The MPs in soil ecosystems alter the physicochemical characteristics of the soil This effect may vary depending on the size, shape, type and amount of MPs. Different types of MPs’ polymer, size, and change might impact the decomposition of soil organic matter and the cycles of some plant nutrients differently. In addition to this impact over soil organic matter decomposition and nutrient cycles, altered soil microbial activity, bulk density, aggregate stability, water holding capacity, evaporation affect the soil and plant health adversely. This review aims to illuminate the direct impacts of MPs over soil and the changes occurring in soil characteristics due to the presence of MPs in the soil ecosystem.

Kaynakça

  • Allison SD, Jastrow JD, 2006. Activities of extracellular enzymes in physically isolated fractions of restored grassland soils. Soil Biol. Biochem. 38: 3245–3256.
  • Andrady AL, 2011. Microplastics in the marine environment. Mar. Pollut. Bull. 62(8):1596–1605.
  • Andrés Rodríguez-Seijo RP, 2018. Microplastics in agricultural soils are they a real environmental hazard? Chapter 3. Bioremediation of Agricultural Soils. CRC Press, Boca Raton, FL.
  • Bandopadhyay S, Sintim HY, DeBruyn JM, 2019. Structural and functional responses of soil microbial communities to biodegradable plastic film mulching in two agroecosystems. bioRxiv.
  • Boots B, Russell CW, Green DS, 2019. Effects of microplastics in soil ecosystems: above and below ground. Environ. Sci. Technol. 53(19):11496–11506.
  • Cao D, Wang X, Luo X, Liu G, Zheng H, 2017. Effects of polystyrene microplastics on the fitness of earthworms in an agricultural soil. IOP Conf. Ser. Earth Environ. 61:012148.
  • Cary J, Hayden C, 1973. An index for soil pore size distribution. Geoderma, 9(4): 249–256.
  • Chen H, Wang Y, Sun X, Peng Y, Xiao L, 2020. Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function. Chemosphere 243, 125271.
  • Corradini F, Meza P, Eguiluz R, Casado F, Huerta-Lwanga E, Geissen V, 2019. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal, Sci of The Total Environ. 671:411-420.
  • Crespy D, Bozonnet M, Meier M, 2008. “100 Years of Bakelite, the material of a 1000 uses,” Angewandte Chemie–International Edition.
  • Daily GC, Matson PA, Vitousek PM, 1997. Ecosystem services supplied by soil. In: Nature’s services: Societal dependence on natural ecosystems (ed. Daily GC). Island Press, Washington, D.C. pp, 113-132.
  • de Souza Machado AA, Lau CW, Kloas W, Bergmann J, Bachelier JB, Faltin E, Becker R, Görlich AS, Rillig MC, 2019. Microplastics can change soil properties and affect plant performance. Environ. Sci. Technol. 53(10): 6044–6052.
  • de Souza Machado AA, Lau CW, Till J, Kloas W, Lehmann A, Becker R, Rillig MC, 2018. Impacts of microplastics on the soil biophysical environment. Environ. Sci. Technol. 52(17): 9656–9665.
  • Dominati EJ, MacKay AD. Bouna J, Green S 2016. An ecosystems approach to quantify soil performance for multiple outcomes: The future of land evaluation? Soil Science Society of America Journal, 80:438-449.
  • Dong Z, Qiu Y, Zhang W, Yang Z, Wei L, 2018. Size-dependent transport and retention of micron-sized plastic spheres in natural sand saturated with seawater. Water Res. 143:518–526.
  • Fuller S, Gautam A, 2016. A Procedure for Measuring Microplastics using Pressurized Fluid Extraction. Environmental Science & Technology 50 (11): 5774-5780.
  • Gabet EJ, Reichman OJ, Seabloom EW, 2003. The effect of bioturbation on soil processes and sediment transport. Ann. Rev. Earth Planet. Sci. 31: 249–273.
  • Geyer R, Jambeck J, Law L K, 2017. Production, use, and fate of all plastics ever made. Science Advances, 3(7).
  • Gigault J, El Hadri H, Nguyen B, Grassl B, Rowenczyk L, Tufenjki N, Feng S, Weisner M, 2021. Nanoplastics are neither microplastics nor engineered nanoparticles. Nat. Nanotechnol. 16:501–507.
  • Gohlami H, Mohammadifar A, Bui DT, Collins A, 2020. Mapping wind erosion hazard with regression-based machine learning algorithms. Sci. Rep. 10:20494.
  • Green DS, Boots B, Sigwart J, Jiang S, Rocha C, 2016. Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling. Environ. Pollut. 208: 426–434.
  • Greenland D, 1977. Soil damage by intensive arable cultivation: temporary or permanent? Philosophical Transactions of the Royal Society of London B, Biological Sciences, 281(980):193–208.
  • Guo JJ, Huang XP, Xiang L, Wang YZ,. Li YW, Li H, Cai QY, Mo CH, Wong MH (2020). Source, migration and toxicology of microplastics in soil. Environ. Int., 137 Article 105263.
  • Guo QQ, Xiao MR, Ma Y, Niu H, Zhang GS, 2021. Polyester microfiber and natural organic matter impact microbial communities, carbon-degraded enzymes, and carbon accumulation in a clayey soil. J. Hazard. Mater. 405: 124701.
  • Gündoğdu S, Çevik C, Güzel E, Kilercioğlu S, 2018. Microplastics in municipal wastewater treatment plants in Turkey: a comparison of the influent and secondary effluent concentrations. Environ Monit Assess. 2018: 190(11):626.
  • Hale RC, Seeley ME, La Guardia MJ, Mai L, Zeng EY, 2020. A Global Perspective on Microplastics. Journal of Geop. Res. 125(1).
  • He D, Luo Y, Lu S, Liu M, Song Y, Lei L, 2018. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. Trends in Analytical Chemistry, 09:63-172.
  • Helmberger MS, Tiemann LK, Grieshop MJ, 2020. Towards an ecology of soil microplastics. Functional Ecology. 34:550–560. Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M, 2012. Microplastics in the marine environment: a review of the methods used for ıdentification and quantification. Environmental Science & Technology, 46: 3060-3075.
  • Hodson ME, Duffus-Hodson CA, Clark A, Prendergast-Miller MT, Thorpe KL, 2017. Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates. Environ. Sci. Technol. 51:4714–4721.
  • Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C, 2017.Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 15(586):127-141.
  • Huang Y, Zhao Y, Wang J, Zhang M, Jia W, Qin X, 2019. LDPE microplastic films alter microbial community composition and enzymatic activities in soil. Environ. Pollut. 254.
  • Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL, 2015. Plastic waste inputs from land into the ocean. Science 347:768–771.
  • Jiang XJ, Liu W, Wang E, Zhou T, Xin P, 2017. Residual plastic mulch fragments effects on soil physical properties and water flow behavior in the Minqin Oasis, northwestern China. Soil Till. Res. 166:100–107.
  • Katz JJ, Norris JR, Shipman LL, Thurnauer MC, Wasielewski MR, 1978. Chlorophyll function in the photosynthetic reaction center. Annu. Rev. Biophys. Bioeng. 7(1): 393–434.
  • Klute A, Dirksen C, 1986. Hydraulic conductivity and diffusivity: laboratory methods. Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods (methodsofsoilan1), pp. 687–734.
  • Lebreton L, Andrady A, 2019. Future scenarios of global plastic waste generation and disposal. Palgrave Communications, 5:1-11.
  • Lehmann A, Fitschen K, Rillig MC, 2019. Abiotic and biotic factors influencing the effect of microplastic on soil aggregation. Soil Systems, 3(1): 21.
  • Li X, Chen L, Mei Q, Dong B, Dai X, Ding G, Zeng EY, 2018. Microplastics in sewage sludge from the wastewater treatment plants in China. Water Res. 142: 75–85.
  • Liu EK, He WQ, Yan CR, 2014. ‘White revolution’ to ‘white pollution’ – agricultural plastic film mulch in China. Environ. Res. Lett. 9.
  • Liu H, Yang X, Liu G, Liang C, Xue S, Chen H, Ritsema CJ, Geissen V, 2017. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere, 185: 907–917.
  • Lozano YM, Aguilar-Trigueros CA, Onandia G, Maaß S, Zhao T, Rillig MC, 2021. Effects of microplastics and drought on soil ecosystem functions and multi functionality. J. Appl. Ecol. 00: 1–9.
  • Mason SA, Garneau D, Sutton R, Chu Y, Ehmann K, Barnes J, Fink P, Papazissimos D, Rogers DL, 2016. Microplastic Pollution Is Widely Detected in US Municipal Wastewater Treatment Plants Effluent. Environ. Poll, 218: 1045-1054.
  • Mbachu O, Jenkins G, Kaparaju P, Pratt C, 2021. The rise of artificial soil carbon inputs: Reviewing microplastic pollution effects in the soil environment. Science of The Total Environment, 146569.
  • Mintenig SM, Int-Veen I, Loder MGJ, Primpke S, Gerdts G, 2017. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging, Water Research, 108, 365-372. Moreno MM, Moreno A, 2008. Effect of different biodegradable and polyethylene mulches on soil properties and production in a tomato crop. Sci. Horticult. 116: 256–263.
  • O’Connor D, Pan S, Shen Z, Song Y, Jin Y, Wu WM, Hou D, 2019. Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles. Environ. Pollut. 249:527–534.
  • Ockelford A, Bulalrd J, McKenna-Neuman C, O'Brien P, 2020. Wind erosion of microplastics from soils: linking soil surface properties with microplastic flux, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17818.
  • Qi Y, Yang X, Pelaez AM, Lwanga EH, Beriot N, Gertsen H, Garbeva P, Geissen V, 2018. Macro-andmicro-plastics in soil-plant system: effects of plasticmulch film residues on wheat (Triticum aestivum) growth. Sci. Total Environ. 645: 1048–1056.
  • Ramos L, Berenstein G, Hughes EA, Zalts A, Montserrat JM, 2015. Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina. Sci. Total Environ. 523, 74–81.
  • Ren X, Tang J, Liu X, Liu Q, 2019. Effects ofmicroplastics on greenhouse gas emissions and the microbial community in fertilized soil. Environmental Pollution, 113347.
  • Rillig MC, 2012. Microplastic in terrestrial ecosystems and the soil? Environ. Sci. Technol. 46: 6453–6454.
  • Rillig MC, 2018. Microplastic disguising as soil carbon storage. Environ. Sci. Technol. 52: 6079–6080.
  • Rillig MC, Lehmann A, 2020. Microplastic in terrestrial ecosystems. Science 368, 1430–1431.
  • Rillig MC, Ziersch L, Hempel S, 2017. Microplastic transport in soil by earthworms. Sci. Rep. 7:1362.
  • Rochman CM, 2015. The complex mixture, fate and toxicity of chemicals associated with plastic debris in the marine environment, in Marine Anthropogenic Litter eds Bergmann, M., Gutow, L., and Klages, M. (Cham: Springer), 117–140.
  • Rodriguez-Seijo A, Santos B, da Silva EF, Cachada A, Pereira R, 2019. Low-density polyethylene microplastics as a source and carriers of agrochemicals to soil and earthworms. Environ. Chem. 16(1):8–17.
  • Six J, Frey S, Thiet R, Batten K, 2006. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J. 70(2): 555–569.
  • Steinmetz Z, Wollmann C, Schaefer M, Buchmann C, David J, Troger J, Munoz K, Fror O, Schaumann GE, 2016. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ. 550: 690–705.
  • Thompson RC, Moore CJ, vom Saal FS, Swan SH, 2009. Plastics, the environment and human health: current consensus and future trends. Philos Trans. R. Soc. Lond B. Biol. Sci. 364(1526): 2153-66.
  • Trasar-Cepeda C, Leiros MC, Gil-Sotres F, 2008. Hydrolytic enzyme activities in agricultural and forest soils. some implications for their use as indicators of soil quality. Soil Biol. Biochem. 40: 2146–2155.
  • von Lützow M, Kogel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H, 2006. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur. J. Soil Sci. 57: 426–445.
  • Wan Y, Wu C, Xue Q, Hui X, 2019. Effects of plastic contamination on water evaporation and desiccation cracking in soil. Sci. Total Environ. 654: 576–582.
  • Wang J, Lv S, Zhang M, Chen G, Zhu T, Zhang S, 2016b. Effects of plastic film residues on occurrence of phthalates and microbial activity in soils. Chemosphere 151: 171–177.
  • Wei W, Huang QS, Sun J, Wang JY, Wu SL, Ni BJ, 2019. Polyvinyl chloride microplastics affect methane production from the anaerobic digestion of waste activated sludge through leaching toxic bisphenol-A. Environ. Sci. Technol. 53: 2509–2517.
  • Windsor FM, Durance I, Horton AA, Thompson RC, Tyler CR, Ormerod SJ, 2019. A catchment-scale perspective of plastic pollution. Glob. Chang. Biol. 25:1207–1221.
  • Wright SL Kelly FJ, 2017. Plastic and human health: a micro issue? Environ. Sci. Technol. 51: 6634-6647
  • Xu B, Liu F, Cryder Z, Huang D, Lu Z, He Y, Wang H, Lu Z, Brookes PC, Tang C, Gan J, Xu J, 2020. Microplastics in the soil environment: occurrence, risks, interactions and fate–a review. Critical Reviews in Environmental Science and Technology, 50(21): 2175-2222.
  • Yang X, Bento CP, Chen H, Zhang H, Xue S, Lwanga EH, Zomer P, Ritsema CJ, Geissen V, 2018. Influence ofmicroplastic addition on glyphosate decay and soil microbial activities in Chinese loess soil. Environ. Pollut. 242: 338–347.
  • Yu M, Van Der Ploeg M, Lwanga EH, Yang X, Zhang S, Ma X, Ritsema CJ, Geissen V, 2019. Leaching of microplastics by preferential flow in earthworm (Lumbricus terrestris) burrows. Environmental Chemistry, 16(1): 31–40.
  • Zang H, Zhou J, Marshall MR, Chadwick DR, Wen Y, Jones DL, 2020. Microplastics in the agroecosystem: are they an emerging threat to the plant-soil system? Soil Biol. Biochem. 148: 107926.
  • Zeng LS, Zhou ZF, Shi YX, 2013. Environmental problems and control ways of plastic film in agricultural production. Appl. Mech. Mater. (295–298):2187–2190.
  • Zhang G, Zhang F, Li X, 2019. Effects of polyester microfibers on soil physical properties: perception from a field and a pot experiment. Sci. Total Environ. 670, 1–7.
  • Zhang M, Dong B, Qiao Y, Yang H, Wang Y, Liu M, 2018. Effects of sub-soil plastic film mulch on soil water and salt content and water utilization by winter wheat under different soil salinities. Field Crop Res. 225:130–140.
  • Zheng W, Morris EK, Lehmann A, Rillig MC, 2016. Interplay of soil water repellency, soil aggregation and organic carbon. A meta-analysis. Geoderma, 283:39–47.
  • Zhou J, Gui H, Banfield CC, Wen Y, Zang HD, Dippold MA, Charlton A, Jones DL, 2021. The microplastisphere: biodegradable microplastics addition alters soil microbial community structure and function. Soil Biol. Biochem. 156: 108211. Ziajahromi S, Neale PA, Rintoul L, Leusch FD, 2017. Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics. Water Res. 1;112:93-99.

Toprak Ekosistemi Üzerine Mikroplastiklerin Etkileri

Yıl 2021, Cilt: 9 Sayı: 2, 79 - 91, 27.12.2021
https://doi.org/10.33409/tbbbd.997807

Öz

Mikroplastikler (MP’ler) yeni nesil olarak ortaya çıkan kirleticiler olmakla birlikte, su ve toprak ekosistemlerindeki varlıkları, tüm ekosistemler için büyük bir tehdit oluşturdukları için son zamanlarda büyük ilgi çekmektedir. MP’lerin denizel ekosistemlerde su üzerindeki olumsuz etkilerinin sıklıkla ortaya konulmasıyla birlikte, büyük miktarlarda MP varlığı çoğu denizel ekosistemlerde görülmeye başlanmıştır. Plastik malzemelerin üretiminin ve kullanımının küresel artışı, uygun olmayan plastik atık yönetimi ve bertarafına yönelik stratejilerinin tam belirlenmemiş olması, karasal ekosistemlerde de MP kirliliğinde artışa yol açmaktadır. Buna karşın, MP’lerin karasal ortamlardaki etkileri henüz tam olarak belirlenememiştir. Mikroplastik parçacıklar (<1mm-5mm) doğrudan (arıtma çamuru uygulamaları, sulama suları, atmosferik birikim vb. uygulamalarla), ya da dolaylı olarak büyük plastik parçaların iklimsel faktörler neticesinde yerinde bozunması (plastik malç materyali) ile toprak ekosistemine dahil olabilmektedir. Toprak ekosistemindeki MP’ler, toprağın fizikokimyasal özelliklerini değiştirebilmektedirler. Bu etki MP’lerin boyutuna, şekline, türüne ve miktarına bağlı olarak değişkenlik gösterebilmektedir. Toprakta bulunan MP’ler polimer türü, şekli ve boyutu açısından toprak organik maddesinin ayrışması ve bazı bitki besin maddeleri döngülerinde farklı etkiler sergilemektedir. Bunun yanısıra, toprağın fizikokimyasal özelliklerinden toprak mikrobiyal aktivitesi, hacim ağırlığı, agregat stabilitesi, su tutma kapasitesi, buharlaşma gibi parametreler toprak ve bitki sağlığı üzerine olumsuz etkiler göstermektedir. Bu derleme, MP’lerin toprak özellikleri üzerine etkilerine ve toprak ekosisteminde varlığı neticesinde meydana gelen değişikliklere ışık tutmayı amaçlamaktadır.

Kaynakça

  • Allison SD, Jastrow JD, 2006. Activities of extracellular enzymes in physically isolated fractions of restored grassland soils. Soil Biol. Biochem. 38: 3245–3256.
  • Andrady AL, 2011. Microplastics in the marine environment. Mar. Pollut. Bull. 62(8):1596–1605.
  • Andrés Rodríguez-Seijo RP, 2018. Microplastics in agricultural soils are they a real environmental hazard? Chapter 3. Bioremediation of Agricultural Soils. CRC Press, Boca Raton, FL.
  • Bandopadhyay S, Sintim HY, DeBruyn JM, 2019. Structural and functional responses of soil microbial communities to biodegradable plastic film mulching in two agroecosystems. bioRxiv.
  • Boots B, Russell CW, Green DS, 2019. Effects of microplastics in soil ecosystems: above and below ground. Environ. Sci. Technol. 53(19):11496–11506.
  • Cao D, Wang X, Luo X, Liu G, Zheng H, 2017. Effects of polystyrene microplastics on the fitness of earthworms in an agricultural soil. IOP Conf. Ser. Earth Environ. 61:012148.
  • Cary J, Hayden C, 1973. An index for soil pore size distribution. Geoderma, 9(4): 249–256.
  • Chen H, Wang Y, Sun X, Peng Y, Xiao L, 2020. Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function. Chemosphere 243, 125271.
  • Corradini F, Meza P, Eguiluz R, Casado F, Huerta-Lwanga E, Geissen V, 2019. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal, Sci of The Total Environ. 671:411-420.
  • Crespy D, Bozonnet M, Meier M, 2008. “100 Years of Bakelite, the material of a 1000 uses,” Angewandte Chemie–International Edition.
  • Daily GC, Matson PA, Vitousek PM, 1997. Ecosystem services supplied by soil. In: Nature’s services: Societal dependence on natural ecosystems (ed. Daily GC). Island Press, Washington, D.C. pp, 113-132.
  • de Souza Machado AA, Lau CW, Kloas W, Bergmann J, Bachelier JB, Faltin E, Becker R, Görlich AS, Rillig MC, 2019. Microplastics can change soil properties and affect plant performance. Environ. Sci. Technol. 53(10): 6044–6052.
  • de Souza Machado AA, Lau CW, Till J, Kloas W, Lehmann A, Becker R, Rillig MC, 2018. Impacts of microplastics on the soil biophysical environment. Environ. Sci. Technol. 52(17): 9656–9665.
  • Dominati EJ, MacKay AD. Bouna J, Green S 2016. An ecosystems approach to quantify soil performance for multiple outcomes: The future of land evaluation? Soil Science Society of America Journal, 80:438-449.
  • Dong Z, Qiu Y, Zhang W, Yang Z, Wei L, 2018. Size-dependent transport and retention of micron-sized plastic spheres in natural sand saturated with seawater. Water Res. 143:518–526.
  • Fuller S, Gautam A, 2016. A Procedure for Measuring Microplastics using Pressurized Fluid Extraction. Environmental Science & Technology 50 (11): 5774-5780.
  • Gabet EJ, Reichman OJ, Seabloom EW, 2003. The effect of bioturbation on soil processes and sediment transport. Ann. Rev. Earth Planet. Sci. 31: 249–273.
  • Geyer R, Jambeck J, Law L K, 2017. Production, use, and fate of all plastics ever made. Science Advances, 3(7).
  • Gigault J, El Hadri H, Nguyen B, Grassl B, Rowenczyk L, Tufenjki N, Feng S, Weisner M, 2021. Nanoplastics are neither microplastics nor engineered nanoparticles. Nat. Nanotechnol. 16:501–507.
  • Gohlami H, Mohammadifar A, Bui DT, Collins A, 2020. Mapping wind erosion hazard with regression-based machine learning algorithms. Sci. Rep. 10:20494.
  • Green DS, Boots B, Sigwart J, Jiang S, Rocha C, 2016. Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling. Environ. Pollut. 208: 426–434.
  • Greenland D, 1977. Soil damage by intensive arable cultivation: temporary or permanent? Philosophical Transactions of the Royal Society of London B, Biological Sciences, 281(980):193–208.
  • Guo JJ, Huang XP, Xiang L, Wang YZ,. Li YW, Li H, Cai QY, Mo CH, Wong MH (2020). Source, migration and toxicology of microplastics in soil. Environ. Int., 137 Article 105263.
  • Guo QQ, Xiao MR, Ma Y, Niu H, Zhang GS, 2021. Polyester microfiber and natural organic matter impact microbial communities, carbon-degraded enzymes, and carbon accumulation in a clayey soil. J. Hazard. Mater. 405: 124701.
  • Gündoğdu S, Çevik C, Güzel E, Kilercioğlu S, 2018. Microplastics in municipal wastewater treatment plants in Turkey: a comparison of the influent and secondary effluent concentrations. Environ Monit Assess. 2018: 190(11):626.
  • Hale RC, Seeley ME, La Guardia MJ, Mai L, Zeng EY, 2020. A Global Perspective on Microplastics. Journal of Geop. Res. 125(1).
  • He D, Luo Y, Lu S, Liu M, Song Y, Lei L, 2018. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. Trends in Analytical Chemistry, 09:63-172.
  • Helmberger MS, Tiemann LK, Grieshop MJ, 2020. Towards an ecology of soil microplastics. Functional Ecology. 34:550–560. Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M, 2012. Microplastics in the marine environment: a review of the methods used for ıdentification and quantification. Environmental Science & Technology, 46: 3060-3075.
  • Hodson ME, Duffus-Hodson CA, Clark A, Prendergast-Miller MT, Thorpe KL, 2017. Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates. Environ. Sci. Technol. 51:4714–4721.
  • Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C, 2017.Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 15(586):127-141.
  • Huang Y, Zhao Y, Wang J, Zhang M, Jia W, Qin X, 2019. LDPE microplastic films alter microbial community composition and enzymatic activities in soil. Environ. Pollut. 254.
  • Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL, 2015. Plastic waste inputs from land into the ocean. Science 347:768–771.
  • Jiang XJ, Liu W, Wang E, Zhou T, Xin P, 2017. Residual plastic mulch fragments effects on soil physical properties and water flow behavior in the Minqin Oasis, northwestern China. Soil Till. Res. 166:100–107.
  • Katz JJ, Norris JR, Shipman LL, Thurnauer MC, Wasielewski MR, 1978. Chlorophyll function in the photosynthetic reaction center. Annu. Rev. Biophys. Bioeng. 7(1): 393–434.
  • Klute A, Dirksen C, 1986. Hydraulic conductivity and diffusivity: laboratory methods. Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods (methodsofsoilan1), pp. 687–734.
  • Lebreton L, Andrady A, 2019. Future scenarios of global plastic waste generation and disposal. Palgrave Communications, 5:1-11.
  • Lehmann A, Fitschen K, Rillig MC, 2019. Abiotic and biotic factors influencing the effect of microplastic on soil aggregation. Soil Systems, 3(1): 21.
  • Li X, Chen L, Mei Q, Dong B, Dai X, Ding G, Zeng EY, 2018. Microplastics in sewage sludge from the wastewater treatment plants in China. Water Res. 142: 75–85.
  • Liu EK, He WQ, Yan CR, 2014. ‘White revolution’ to ‘white pollution’ – agricultural plastic film mulch in China. Environ. Res. Lett. 9.
  • Liu H, Yang X, Liu G, Liang C, Xue S, Chen H, Ritsema CJ, Geissen V, 2017. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere, 185: 907–917.
  • Lozano YM, Aguilar-Trigueros CA, Onandia G, Maaß S, Zhao T, Rillig MC, 2021. Effects of microplastics and drought on soil ecosystem functions and multi functionality. J. Appl. Ecol. 00: 1–9.
  • Mason SA, Garneau D, Sutton R, Chu Y, Ehmann K, Barnes J, Fink P, Papazissimos D, Rogers DL, 2016. Microplastic Pollution Is Widely Detected in US Municipal Wastewater Treatment Plants Effluent. Environ. Poll, 218: 1045-1054.
  • Mbachu O, Jenkins G, Kaparaju P, Pratt C, 2021. The rise of artificial soil carbon inputs: Reviewing microplastic pollution effects in the soil environment. Science of The Total Environment, 146569.
  • Mintenig SM, Int-Veen I, Loder MGJ, Primpke S, Gerdts G, 2017. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging, Water Research, 108, 365-372. Moreno MM, Moreno A, 2008. Effect of different biodegradable and polyethylene mulches on soil properties and production in a tomato crop. Sci. Horticult. 116: 256–263.
  • O’Connor D, Pan S, Shen Z, Song Y, Jin Y, Wu WM, Hou D, 2019. Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles. Environ. Pollut. 249:527–534.
  • Ockelford A, Bulalrd J, McKenna-Neuman C, O'Brien P, 2020. Wind erosion of microplastics from soils: linking soil surface properties with microplastic flux, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17818.
  • Qi Y, Yang X, Pelaez AM, Lwanga EH, Beriot N, Gertsen H, Garbeva P, Geissen V, 2018. Macro-andmicro-plastics in soil-plant system: effects of plasticmulch film residues on wheat (Triticum aestivum) growth. Sci. Total Environ. 645: 1048–1056.
  • Ramos L, Berenstein G, Hughes EA, Zalts A, Montserrat JM, 2015. Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina. Sci. Total Environ. 523, 74–81.
  • Ren X, Tang J, Liu X, Liu Q, 2019. Effects ofmicroplastics on greenhouse gas emissions and the microbial community in fertilized soil. Environmental Pollution, 113347.
  • Rillig MC, 2012. Microplastic in terrestrial ecosystems and the soil? Environ. Sci. Technol. 46: 6453–6454.
  • Rillig MC, 2018. Microplastic disguising as soil carbon storage. Environ. Sci. Technol. 52: 6079–6080.
  • Rillig MC, Lehmann A, 2020. Microplastic in terrestrial ecosystems. Science 368, 1430–1431.
  • Rillig MC, Ziersch L, Hempel S, 2017. Microplastic transport in soil by earthworms. Sci. Rep. 7:1362.
  • Rochman CM, 2015. The complex mixture, fate and toxicity of chemicals associated with plastic debris in the marine environment, in Marine Anthropogenic Litter eds Bergmann, M., Gutow, L., and Klages, M. (Cham: Springer), 117–140.
  • Rodriguez-Seijo A, Santos B, da Silva EF, Cachada A, Pereira R, 2019. Low-density polyethylene microplastics as a source and carriers of agrochemicals to soil and earthworms. Environ. Chem. 16(1):8–17.
  • Six J, Frey S, Thiet R, Batten K, 2006. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J. 70(2): 555–569.
  • Steinmetz Z, Wollmann C, Schaefer M, Buchmann C, David J, Troger J, Munoz K, Fror O, Schaumann GE, 2016. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ. 550: 690–705.
  • Thompson RC, Moore CJ, vom Saal FS, Swan SH, 2009. Plastics, the environment and human health: current consensus and future trends. Philos Trans. R. Soc. Lond B. Biol. Sci. 364(1526): 2153-66.
  • Trasar-Cepeda C, Leiros MC, Gil-Sotres F, 2008. Hydrolytic enzyme activities in agricultural and forest soils. some implications for their use as indicators of soil quality. Soil Biol. Biochem. 40: 2146–2155.
  • von Lützow M, Kogel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H, 2006. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur. J. Soil Sci. 57: 426–445.
  • Wan Y, Wu C, Xue Q, Hui X, 2019. Effects of plastic contamination on water evaporation and desiccation cracking in soil. Sci. Total Environ. 654: 576–582.
  • Wang J, Lv S, Zhang M, Chen G, Zhu T, Zhang S, 2016b. Effects of plastic film residues on occurrence of phthalates and microbial activity in soils. Chemosphere 151: 171–177.
  • Wei W, Huang QS, Sun J, Wang JY, Wu SL, Ni BJ, 2019. Polyvinyl chloride microplastics affect methane production from the anaerobic digestion of waste activated sludge through leaching toxic bisphenol-A. Environ. Sci. Technol. 53: 2509–2517.
  • Windsor FM, Durance I, Horton AA, Thompson RC, Tyler CR, Ormerod SJ, 2019. A catchment-scale perspective of plastic pollution. Glob. Chang. Biol. 25:1207–1221.
  • Wright SL Kelly FJ, 2017. Plastic and human health: a micro issue? Environ. Sci. Technol. 51: 6634-6647
  • Xu B, Liu F, Cryder Z, Huang D, Lu Z, He Y, Wang H, Lu Z, Brookes PC, Tang C, Gan J, Xu J, 2020. Microplastics in the soil environment: occurrence, risks, interactions and fate–a review. Critical Reviews in Environmental Science and Technology, 50(21): 2175-2222.
  • Yang X, Bento CP, Chen H, Zhang H, Xue S, Lwanga EH, Zomer P, Ritsema CJ, Geissen V, 2018. Influence ofmicroplastic addition on glyphosate decay and soil microbial activities in Chinese loess soil. Environ. Pollut. 242: 338–347.
  • Yu M, Van Der Ploeg M, Lwanga EH, Yang X, Zhang S, Ma X, Ritsema CJ, Geissen V, 2019. Leaching of microplastics by preferential flow in earthworm (Lumbricus terrestris) burrows. Environmental Chemistry, 16(1): 31–40.
  • Zang H, Zhou J, Marshall MR, Chadwick DR, Wen Y, Jones DL, 2020. Microplastics in the agroecosystem: are they an emerging threat to the plant-soil system? Soil Biol. Biochem. 148: 107926.
  • Zeng LS, Zhou ZF, Shi YX, 2013. Environmental problems and control ways of plastic film in agricultural production. Appl. Mech. Mater. (295–298):2187–2190.
  • Zhang G, Zhang F, Li X, 2019. Effects of polyester microfibers on soil physical properties: perception from a field and a pot experiment. Sci. Total Environ. 670, 1–7.
  • Zhang M, Dong B, Qiao Y, Yang H, Wang Y, Liu M, 2018. Effects of sub-soil plastic film mulch on soil water and salt content and water utilization by winter wheat under different soil salinities. Field Crop Res. 225:130–140.
  • Zheng W, Morris EK, Lehmann A, Rillig MC, 2016. Interplay of soil water repellency, soil aggregation and organic carbon. A meta-analysis. Geoderma, 283:39–47.
  • Zhou J, Gui H, Banfield CC, Wen Y, Zang HD, Dippold MA, Charlton A, Jones DL, 2021. The microplastisphere: biodegradable microplastics addition alters soil microbial community structure and function. Soil Biol. Biochem. 156: 108211. Ziajahromi S, Neale PA, Rintoul L, Leusch FD, 2017. Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics. Water Res. 1;112:93-99.
Toplam 74 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat Mühendisliği
Bölüm Makaleler
Yazarlar

Muhittin Onur Akça 0000-0003-4540-9371

Sonay Sözüdoğru Ok

Yayımlanma Tarihi 27 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 9 Sayı: 2

Kaynak Göster

APA Akça, M. O., & Sözüdoğru Ok, S. (2021). Toprak Ekosistemi Üzerine Mikroplastiklerin Etkileri. Toprak Bilimi Ve Bitki Besleme Dergisi, 9(2), 79-91. https://doi.org/10.33409/tbbbd.997807
AMA Akça MO, Sözüdoğru Ok S. Toprak Ekosistemi Üzerine Mikroplastiklerin Etkileri. tbbbd. Aralık 2021;9(2):79-91. doi:10.33409/tbbbd.997807
Chicago Akça, Muhittin Onur, ve Sonay Sözüdoğru Ok. “Toprak Ekosistemi Üzerine Mikroplastiklerin Etkileri”. Toprak Bilimi Ve Bitki Besleme Dergisi 9, sy. 2 (Aralık 2021): 79-91. https://doi.org/10.33409/tbbbd.997807.
EndNote Akça MO, Sözüdoğru Ok S (01 Aralık 2021) Toprak Ekosistemi Üzerine Mikroplastiklerin Etkileri. Toprak Bilimi ve Bitki Besleme Dergisi 9 2 79–91.
IEEE M. O. Akça ve S. Sözüdoğru Ok, “Toprak Ekosistemi Üzerine Mikroplastiklerin Etkileri”, tbbbd, c. 9, sy. 2, ss. 79–91, 2021, doi: 10.33409/tbbbd.997807.
ISNAD Akça, Muhittin Onur - Sözüdoğru Ok, Sonay. “Toprak Ekosistemi Üzerine Mikroplastiklerin Etkileri”. Toprak Bilimi ve Bitki Besleme Dergisi 9/2 (Aralık 2021), 79-91. https://doi.org/10.33409/tbbbd.997807.
JAMA Akça MO, Sözüdoğru Ok S. Toprak Ekosistemi Üzerine Mikroplastiklerin Etkileri. tbbbd. 2021;9:79–91.
MLA Akça, Muhittin Onur ve Sonay Sözüdoğru Ok. “Toprak Ekosistemi Üzerine Mikroplastiklerin Etkileri”. Toprak Bilimi Ve Bitki Besleme Dergisi, c. 9, sy. 2, 2021, ss. 79-91, doi:10.33409/tbbbd.997807.
Vancouver Akça MO, Sözüdoğru Ok S. Toprak Ekosistemi Üzerine Mikroplastiklerin Etkileri. tbbbd. 2021;9(2):79-91.