BibTex RIS Kaynak Göster

İnsan Kaldırma Hareketinin Analizi için Tip−2 Bulanık Sistem Yaklaşımı

Yıl 2013, Cilt: 6 Sayı: 1, - , 24.06.2016

Öz

Günümüzde bilgisayar görmesi, robotik, hareket tanıma ve insansı robotların geliştirilmesi gibi mühendislik problemlerinin çözümüne ve insanların günlük yaşamında sıkça yaptığı yürüme, koşma ve kaldırma gibi hareketlerin analizine yönelik birçok çalışma yapılmaktadır. Bunun için insan hareketleri modellenerek simülasyonunun yapılması ve biyomekanik analizlerinin verilmesi bu açıdan önemlidir. Bu çalışmada, modelleme yönünden karmaşık bir hareket olan insanın kaldırma hareketinin analizi için tip-2 bulanık kontrol tabanlı bir yaklaşım sunulmuştur. Önerilen yaklaşım için iki boyutlu beş parçalı bir insan modeli kullanılarak, her parçaya ait eklem açısı tip-1 ve tip-2 bulanık denetleyiciler ile kontrol edilmiştir. Deneysel olarak elde edilen kaldırma hareketine karşılık gelen veriler kullanılarak, önerilen yaklaşımın Matlab/Simulink simülasyonu karşılaştırmalı olarak verilmiştir. Simülasyon sonuçları insanın kaldırma hareketinin analizi için kullanılan tip-2 bulanık sistemin, zaman ve performans açısından etkinliğini doğrulamaktadır.

Kaynakça

  • [1] Chapman, A.E. 2008. Biomechanical Analysis of Fundamental Human Movements, Human Kinetics, USA.
  • [2] Vondrak M., Sigal L., ve Jenkins O.C., 2013, Dynamical Simulation Priors for Human Motion Tracking, IEEE Trans on Pattern Analy. and Mach. Intelligence, cilt 35-1, s. 52-66.
  • [3] Wang J., Liu P., She M.F.H., Kouzani A. ve Nahavandi S., 2013, Supervised learning probabilistic Latent Semantic Analysis for human motion analysis, Neurocomputing, Cilt 100, s. 134–143.
  • [4] Ji X. ve Liu H., 2010, Advances in ViewInvariant Human Motion Analysis: A Review, IEEE Transactions on Systems, Man, And Cybernetics—Part C: Applications And Reviews, Cilt 40-1, s. 13-25.
  • [5] Chen Z., Wang Lu ve Yung N.H.C., 2011, Adaptive human motion analysis and prediction, Pattern Recognition, Cilt 44, s. 2902–2914.
  • [6] D. Mavrikios, V. Karabatsou, K. Alexopoulos, M. Pappas, P. Gogos, G. Chryssolouris, 2006, An approach to human motion analysis and modeling, International Journal of Industrial Ergonomics, Cilt 36, s. 979–989.
  • [7] Çilli, M. 2007. İnsan Hareketinin Modellenmesi ve Benzeşiminde Temel Bileşenler Analizi Yönteminin Kullanılması, Hacettepe Üniversitesi Sağlık Bilimleri Enstitüsü Spor Bilimleri ve Teknolojisi Programı Doktora Tezi, Ankara.
  • [8] Güleç, N., Doğan, E., ve Ünal, M. 2007. Çok Gövdeli Sistemlerde Hareket Analizi, TOK'07 Otomatik Kontrol Ulusal Toplantısı, Sabancı Üniversitesi, Tuzla, İstanbul, Türkiye.
  • [9] Moldenhauer, J., Boesnach, I., Beth, T., Wank, V., ve Bos, K. 2005. Analysis of Human Motion for Humanoid Robots, Proceedings of IEEE International Conference on Robotics and Automation, s. 311-316.
  • [10]Kailai W., Tagawa Y. ve Shiba N., 2009, Simulation of Human Body Motion under the Condition of Weightlessness, ICROS-SICE International Joint Conference, s. 3835-3840.
  • [11]Yong C., 2010, Motion Mechanism and Simulation of the Human Jumping Robot, International Conference on Computer Design And Applications (ICCDA 2010), s. 361-365.
  • [12]Hwang, S.J., Choi, H.S., ve Kim, Y.H. 2004. Motion Analysis Based on a Multi-Segment Foot Model in Normal Walking, Proceedings of 26th Annual International Conference on Engineering in Medicine and Biology Society, cilt. 2, pp. 5104-5106.
  • [13]Sreenivasa M., Souères P. ve Laumond J.P., 2012, Walking to Grasp: Modeling of Human Movements as Invariants and an Application to Humanoid Robotics, IEEE Transactions on Systems, Man, And Cybernetics—Part A: Systems And Humans, Cilt 42-4, s. 880-894.
  • [14]Kaustav Nandy and Rama Chellappa, 2007, Simulation And Analysis Of Human Walking Motion, IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2007, s. I-797 - I-800.
  • [15]Arisumi H., Chardonnet J.R., 2007, Dynamic Lifting Motion of Humanoid Robots, IEEE International Conference on Robotics and Automation Roma, Italy, s. 2661-2668.
  • [16]Lin, C.J., Ayoub, M.M., ve Bernard, T.M. 1999. Computer motion simulation for sagittal plane lifting activities, International Journal of Industrial Ergonomics, cilt. 24-2, s. 141-155.
  • [17]Chan, C.S., ve Liu, H. 2009. Fuzzy Qualitative Human Motion Analysis, IEEE Transactions on Fuzzy Systems, cilt. 17-4.
  • [18]Qu, X., ve Nussbaum, M.A. 2009. Simulating Human Lifting Motions Using Fuzzy-Logic Control, IEEE Transactions on System, Man and Cybernetics Part A: Systems and Humans, cilt. 39-1, s. 109-118.
  • [19]Karaköse, M. 2010. İnsan Hareketlerinin Analiz ve Simülasyonu için Bulanık Mantık Yaklaşımı, Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu (ELECO-2010).
  • [20]Mendel, J. M. 2007. Advances in type-2 fuzzy sets and systems, Information Sciences, Cilt. 177, s. 84-110.
  • [21]Karaköse, M. 2010. Sine-square embedded fuzzy sets, IEEE International Conference on Systems Man and Cybernetics (SMC2010), s. 3628-3631.
  • [22]Khanesar, M.A., Kayacan, E., Teshnehlab, M. ve Kaynak, O. 2011. Analysis of the Noise Reduction Property of Type-2 Fuzzy Logic Systems Using a Novel Type-2 Membership Function, IEEE Transactions on Systems Man, and Cybernetics Part B: Cybernetics, Cilt. 41, s. 1395 – 1406.
  • [23]Linda, O., ve Manic, M. 2012. Monotone Centroid Flow Algorithm for Type-Reduction of General Type-2 Fuzzy Sets, IEEE Transactions on Fuzzy Systems, Cilt. 99-1.
  • [24]Mendel, J.M., ve Wu, D. 2009. Enhanced Karnik–Mendel Algorithms, IEEE Transactions on Fuzzy Systems, Cilt. 17-4.
  • [25]Karaköse, M., ve Akın, E. 2004. Type-2 Fuzzy Activation Function for Multilayer feedforward Neural Networks, IEEE Transactions on Systems Man, and Cybernetics, s. 3762-3767.
  • [26]Ulu, C., Güzelkaya, M., ve Eksin, İ. 2011. A Dynamik Defuzzification Method for Interval Type-2 Fuzzy Logic Controllers, Proceedings of the 2011 IEEE Intemational Conference on Mechatronics, İstanbul,Türkiye.
  • [27]Kumbasar, T., Eksin, İ., Güzelkaya, M. ve Yesil, E. 2012. Type-2 fuzzy model based controller design for neutralization processes, ISA Transactions, s. 277-287.
  • [28]Kayacan, E., Ciğdem, O. ve Kaynak, O. 2012.Sliding Mode Control Approach for Online Learning as Applied to Type-2 Fuzzy Neural Networks and Its Experimental Evaluation, IEEE Transactıons on Industrıal Electronıcs, Cilt. 59-9,
  • [29]Efe, M.Ö. 2009. A Type 2 Neuron Model for Classification and Regression Problems, IEEE EMBS Conference on Neural Engineering.
  • [30]Çelikyılmaz, A., ve Türkşen, I.B. 2008. Enhanced Fuzzy System Models With Improved Fuzzy Clustering Algorithm, IEEE Transactions on Fuzzy Systems, Cilt 16-3.

An Approach Based on Type-2 Fuzzy Control To Analyze Human’s Lifting Movement

Yıl 2013, Cilt: 6 Sayı: 1, - , 24.06.2016

Öz

Many studies in nowadays have been done for solving engineering problems such as computer vision, robotic, motion recognition, and the development of humanoid robots and analysis of human movements such as walking, running, and lifting that are often done in daily life. Therefore, simulated human movements by modeling and given its biomechanical analysis are very important. In this study, an approach based on type-2 fuzzy control is proposed to analyze human’s lifting movement that is a complex movement in terms of modeling. For the proposed approach, joint angle of each part are controlled with type-1 and type-2 fuzzy controller by using a two-dimension five-part human model. The simulation of this approach in Matlab/Simulink is comparatively given by using the related data that is obtained experimentally. Effectiveness of type-2 fuzzy system is verified with regards to time and performance thanks to the human’s lifting movement analyzed with simulation results.

Kaynakça

  • [1] Chapman, A.E. 2008. Biomechanical Analysis of Fundamental Human Movements, Human Kinetics, USA.
  • [2] Vondrak M., Sigal L., ve Jenkins O.C., 2013, Dynamical Simulation Priors for Human Motion Tracking, IEEE Trans on Pattern Analy. and Mach. Intelligence, cilt 35-1, s. 52-66.
  • [3] Wang J., Liu P., She M.F.H., Kouzani A. ve Nahavandi S., 2013, Supervised learning probabilistic Latent Semantic Analysis for human motion analysis, Neurocomputing, Cilt 100, s. 134–143.
  • [4] Ji X. ve Liu H., 2010, Advances in ViewInvariant Human Motion Analysis: A Review, IEEE Transactions on Systems, Man, And Cybernetics—Part C: Applications And Reviews, Cilt 40-1, s. 13-25.
  • [5] Chen Z., Wang Lu ve Yung N.H.C., 2011, Adaptive human motion analysis and prediction, Pattern Recognition, Cilt 44, s. 2902–2914.
  • [6] D. Mavrikios, V. Karabatsou, K. Alexopoulos, M. Pappas, P. Gogos, G. Chryssolouris, 2006, An approach to human motion analysis and modeling, International Journal of Industrial Ergonomics, Cilt 36, s. 979–989.
  • [7] Çilli, M. 2007. İnsan Hareketinin Modellenmesi ve Benzeşiminde Temel Bileşenler Analizi Yönteminin Kullanılması, Hacettepe Üniversitesi Sağlık Bilimleri Enstitüsü Spor Bilimleri ve Teknolojisi Programı Doktora Tezi, Ankara.
  • [8] Güleç, N., Doğan, E., ve Ünal, M. 2007. Çok Gövdeli Sistemlerde Hareket Analizi, TOK'07 Otomatik Kontrol Ulusal Toplantısı, Sabancı Üniversitesi, Tuzla, İstanbul, Türkiye.
  • [9] Moldenhauer, J., Boesnach, I., Beth, T., Wank, V., ve Bos, K. 2005. Analysis of Human Motion for Humanoid Robots, Proceedings of IEEE International Conference on Robotics and Automation, s. 311-316.
  • [10]Kailai W., Tagawa Y. ve Shiba N., 2009, Simulation of Human Body Motion under the Condition of Weightlessness, ICROS-SICE International Joint Conference, s. 3835-3840.
  • [11]Yong C., 2010, Motion Mechanism and Simulation of the Human Jumping Robot, International Conference on Computer Design And Applications (ICCDA 2010), s. 361-365.
  • [12]Hwang, S.J., Choi, H.S., ve Kim, Y.H. 2004. Motion Analysis Based on a Multi-Segment Foot Model in Normal Walking, Proceedings of 26th Annual International Conference on Engineering in Medicine and Biology Society, cilt. 2, pp. 5104-5106.
  • [13]Sreenivasa M., Souères P. ve Laumond J.P., 2012, Walking to Grasp: Modeling of Human Movements as Invariants and an Application to Humanoid Robotics, IEEE Transactions on Systems, Man, And Cybernetics—Part A: Systems And Humans, Cilt 42-4, s. 880-894.
  • [14]Kaustav Nandy and Rama Chellappa, 2007, Simulation And Analysis Of Human Walking Motion, IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2007, s. I-797 - I-800.
  • [15]Arisumi H., Chardonnet J.R., 2007, Dynamic Lifting Motion of Humanoid Robots, IEEE International Conference on Robotics and Automation Roma, Italy, s. 2661-2668.
  • [16]Lin, C.J., Ayoub, M.M., ve Bernard, T.M. 1999. Computer motion simulation for sagittal plane lifting activities, International Journal of Industrial Ergonomics, cilt. 24-2, s. 141-155.
  • [17]Chan, C.S., ve Liu, H. 2009. Fuzzy Qualitative Human Motion Analysis, IEEE Transactions on Fuzzy Systems, cilt. 17-4.
  • [18]Qu, X., ve Nussbaum, M.A. 2009. Simulating Human Lifting Motions Using Fuzzy-Logic Control, IEEE Transactions on System, Man and Cybernetics Part A: Systems and Humans, cilt. 39-1, s. 109-118.
  • [19]Karaköse, M. 2010. İnsan Hareketlerinin Analiz ve Simülasyonu için Bulanık Mantık Yaklaşımı, Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu (ELECO-2010).
  • [20]Mendel, J. M. 2007. Advances in type-2 fuzzy sets and systems, Information Sciences, Cilt. 177, s. 84-110.
  • [21]Karaköse, M. 2010. Sine-square embedded fuzzy sets, IEEE International Conference on Systems Man and Cybernetics (SMC2010), s. 3628-3631.
  • [22]Khanesar, M.A., Kayacan, E., Teshnehlab, M. ve Kaynak, O. 2011. Analysis of the Noise Reduction Property of Type-2 Fuzzy Logic Systems Using a Novel Type-2 Membership Function, IEEE Transactions on Systems Man, and Cybernetics Part B: Cybernetics, Cilt. 41, s. 1395 – 1406.
  • [23]Linda, O., ve Manic, M. 2012. Monotone Centroid Flow Algorithm for Type-Reduction of General Type-2 Fuzzy Sets, IEEE Transactions on Fuzzy Systems, Cilt. 99-1.
  • [24]Mendel, J.M., ve Wu, D. 2009. Enhanced Karnik–Mendel Algorithms, IEEE Transactions on Fuzzy Systems, Cilt. 17-4.
  • [25]Karaköse, M., ve Akın, E. 2004. Type-2 Fuzzy Activation Function for Multilayer feedforward Neural Networks, IEEE Transactions on Systems Man, and Cybernetics, s. 3762-3767.
  • [26]Ulu, C., Güzelkaya, M., ve Eksin, İ. 2011. A Dynamik Defuzzification Method for Interval Type-2 Fuzzy Logic Controllers, Proceedings of the 2011 IEEE Intemational Conference on Mechatronics, İstanbul,Türkiye.
  • [27]Kumbasar, T., Eksin, İ., Güzelkaya, M. ve Yesil, E. 2012. Type-2 fuzzy model based controller design for neutralization processes, ISA Transactions, s. 277-287.
  • [28]Kayacan, E., Ciğdem, O. ve Kaynak, O. 2012.Sliding Mode Control Approach for Online Learning as Applied to Type-2 Fuzzy Neural Networks and Its Experimental Evaluation, IEEE Transactıons on Industrıal Electronıcs, Cilt. 59-9,
  • [29]Efe, M.Ö. 2009. A Type 2 Neuron Model for Classification and Regression Problems, IEEE EMBS Conference on Neural Engineering.
  • [30]Çelikyılmaz, A., ve Türkşen, I.B. 2008. Enhanced Fuzzy System Models With Improved Fuzzy Clustering Algorithm, IEEE Transactions on Fuzzy Systems, Cilt 16-3.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA37KC88SB
Bölüm Makaleler(Araştırma)
Yazarlar

Mehmet Karakose

Semiha Makinist Bu kişi benim

Yayımlanma Tarihi 24 Haziran 2016
Yayımlandığı Sayı Yıl 2013 Cilt: 6 Sayı: 1

Kaynak Göster

APA Karakose, M., & Makinist, S. (2016). İnsan Kaldırma Hareketinin Analizi için Tip−2 Bulanık Sistem Yaklaşımı. Türkiye Bilişim Vakfı Bilgisayar Bilimleri Ve Mühendisliği Dergisi, 6(1).
AMA Karakose M, Makinist S. İnsan Kaldırma Hareketinin Analizi için Tip−2 Bulanık Sistem Yaklaşımı. TBV-BBMD. Haziran 2016;6(1).
Chicago Karakose, Mehmet, ve Semiha Makinist. “İnsan Kaldırma Hareketinin Analizi için Tip−2 Bulanık Sistem Yaklaşımı”. Türkiye Bilişim Vakfı Bilgisayar Bilimleri Ve Mühendisliği Dergisi 6, sy. 1 (Haziran 2016).
EndNote Karakose M, Makinist S (01 Haziran 2016) İnsan Kaldırma Hareketinin Analizi için Tip−2 Bulanık Sistem Yaklaşımı. Türkiye Bilişim Vakfı Bilgisayar Bilimleri ve Mühendisliği Dergisi 6 1
IEEE M. Karakose ve S. Makinist, “İnsan Kaldırma Hareketinin Analizi için Tip−2 Bulanık Sistem Yaklaşımı”, TBV-BBMD, c. 6, sy. 1, 2016.
ISNAD Karakose, Mehmet - Makinist, Semiha. “İnsan Kaldırma Hareketinin Analizi için Tip−2 Bulanık Sistem Yaklaşımı”. Türkiye Bilişim Vakfı Bilgisayar Bilimleri ve Mühendisliği Dergisi 6/1 (Haziran 2016).
JAMA Karakose M, Makinist S. İnsan Kaldırma Hareketinin Analizi için Tip−2 Bulanık Sistem Yaklaşımı. TBV-BBMD. 2016;6.
MLA Karakose, Mehmet ve Semiha Makinist. “İnsan Kaldırma Hareketinin Analizi için Tip−2 Bulanık Sistem Yaklaşımı”. Türkiye Bilişim Vakfı Bilgisayar Bilimleri Ve Mühendisliği Dergisi, c. 6, sy. 1, 2016.
Vancouver Karakose M, Makinist S. İnsan Kaldırma Hareketinin Analizi için Tip−2 Bulanık Sistem Yaklaşımı. TBV-BBMD. 2016;6(1).

https://i.creativecommons.org/l/by-nc/4.0Makale Kabulü

 

Çevrimiçi makale yüklemesi yapmak için kullanıcı kayıt/girişini kullanınız.

Dergiye gönderilen makalelerin kabul süreci şu aşamalardan oluşmaktadır:

1.       Gönderilen her makale ilk aşamada en az iki hakeme gönderilmektedir.

2.       Hakem ataması, dergi editörleri tarafından yapılmaktadır. Derginin hakem havuzunda yaklaşık 200 hakem bulunmaktadır ve bu hakemler ilgi alanlarına göre sınıflandırılmıştır. Her hakeme ilgilendiği konuda makale gönderilmektedir. Hakem seçimi menfaat çatışmasına neden olmayacak biçimde yapılmaktadır.

3.       Hakemlere gönderilen makalelerde yazar adları kapatılmaktadır.

4.       Hakemlere bir makalenin nasıl değerlendirileceği açıklanmaktadır ve aşağıda görülen değerlendirme formunu doldurmaları istenmektedir.

5.       İki hakemin olumlu görüş bildirdiği makaleler editörler tarafından benzerlik incelemesinden geçirilir. Makalelerdeki benzerliğin %25’ten küçük olması beklenir.

6.       Tüm aşamaları geçmiş olan bir bildiri dil ve sunuş açısından editör tarafından incelenir ve gerekli düzeltme ve iyileştirmeler yapılır. Gerekirse yazarlara durum bildirilir.

 88x31.png   Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.