Derleme
BibTex RIS Kaynak Göster

Bionematicides used in the control of plant parasitic nematodes

Yıl 2021, Cilt: 12 Sayı: 2, 141 - 156, 15.12.2021
https://doi.org/10.31019/tbmd.938352

Öz

Plant parasitic nematodes cause the highest financial losses in agricultural crops. Numerous microorganisms (bacteria and fungi) and extracts from plants are used in the control of these pests, as well as chemical controls. However, chemical control has negative effects on the environment and human health, while bionematicides are an extremely reliable alternative management option. Bionematicides can act synergistically or as additives with other agricultural inputs in IPM programs and increase the effectiveness of nematode control. In this review, bionematicides of bacterial, fungal and plant/animal origin used in the control of plant parasitic nematodes are listed and discussed.

Kaynakça

  • Abd-Elgawad M.M.M. & T.H. Askary, 2015. Impact of phytonematodes on agriculture economy. (Editor: T.H. Askary & P.R.P. Martinelli, Biocontrol Agents of Phytonematodes). CAB International, Wallingford, 3–49.
  • Abd-Elgawad M.M.M. & T.H. Askary, 2018. Fungal and bacterial nematicides in integrated nematode management strategies. Egyptian Journal of Biological Pest Control, 28 (1): 1-24.
  • Akyazi F. & D.W. Dickson, 2014. Pasteuria penetrans suppression of root-knot nematode Meloidogyne arenaria race 1 in vegetables. Turkish Journal of Entomology, 38 (2): 173-180.
  • Alabouvette C. & Y. Couteaudier, 1992. Biological control of Fusarium wilts with non-pathogenic Fusarium. (Editor: E.C. Tjamos, R.J. Cook & G.C. Papavizas, Biological control of plant diseases). Plenum, New York, 415–426.
  • Balcı H. & E. Durmuşoğlu, 2020. Bitki koruma ürünü olarak biyopestisitler: tanımları, sınıflandırılmaları, mevzuat ve pazarları üzerine bir değerlendirme. Türkiye Biyolojik Mücadele Dergisi, 11(2): 252-265.
  • Berg G. & J. Hallmann, 2006. Control of plant pathogenic fungi with bacterial endophytes. (Editor: T.N. Sieber, C.J.C. Boyle & B.J.E. Schulz, Microbial root endophytes). Springer, Berlin, Heidelberg, 53-69.
  • Braga F.R. & J.V. Araújo, 2014. Nematophagous fungi for biological control of gastrointestinal nematodes in domestic animals. Applied Microbiology and Biotechnology, 98: 71-82.
  • Camo J., A. Lorés, D. Djenane, J.A. Beltrán & P. Roncalés, 2011. Display life of beef packaged with an antioxidant active film as a function of the concentration of oregano extract. Meat Science, 88 (1): 174–178.
  • Chen Z.X. & D. Dickson, 1998. Review of Pasteuria penetrans: Biology, ecology, and biological control potential. Journal of Nematology, 30 (3): 313.
  • Chen Q. & D. Peng, 2019. Nematode chitin and application. Targeting Chitin-containing Organisms, 209-219.
  • Corzo-Martinez M., N. Corzo & M. Villamiel, 2007. Biological properties of onions and garlic. Trends in Food Science & Technology, 18 (12): 609–625.
  • Cumagun C.J.R., & M.R. Moosavi, 2015. Significance of Biocontrol Agents of Phytonematodes. (Editor: T.H. Askary & P.R.P. Martinelli, Biocontrol Agents of Phytonematodes). CAB International, Wallingford, 50–78.
  • Da Rosa, C. G., M.V. De Oliveira Brisola Maciel, S.M. De Carvalho, A.P.Z. De Melo, B. Jummes, T. Da Silva, S.M. Martelli, M.A. Villetti, F.C. Bertoldi & P.L.M. Barreto, 2015. Characterization and evaluation of physicochemical and antimicrobial properties of zein nanoparticles loaded with phenolics monoterpenes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 481: 337–344.
  • Eder R., E. Consoli, J. Krauss & P. Dahlin, 2021. Polysulfides applied as formulated garlic extract to protect tomato plants against the root-knot nematode Meloidogyne incognita. Plants, 10: 394.
  • Engelbrecht, G., I. Horak, P.J. Jansen van Rensburg & S. Claassens 2018. Bacillus-based bionematicides: development, modes of action and commercialisation. Biocontrol Science and Technology, 28 (7): 629-653. EPA (Environmental Protection Agency) 2013. Regulating biopesticides. URL: www.epa.gov/opp00001/biopesticides (Erişim tarihi: Nisan, 2021).
  • Erazo Sandoval N.S., M.M. Echeverría Guadalupe, J.L. Jave Nakayo, H.A. León Reyes, V.A. Lindao Córdova, J.C. Manzano Ocaña & N.M. Inca Chunata, 2020. Effect of Pleurotus ostreatus (Jacq.) and Trichoderma harzianum (Rifai) on Meloidogyne incognita (Kofoid & White) in tomato (Solanum lycopersicum Mill.). Acta Scientiarum Biological Sciences, 42(1): e47522.
  • FAO (Food and Agriculture Organization of the United Nations) 2017. Sustainable management of the fall armyworm in Africa. FAO program for action. Food and agriculture organisation of the united nations. URL: http://www.fao.org/3/a-bt417e.pdf (Erişim tarihi: Nisan, 2021).
  • Francis G. 2002. The biological action of saponins in animal systems: a review. The British Journal of Nutrition, 88: 587–605.
  • Gera Hol W.H., & R. Cook, 2005. An overview of arbuscular mycorrhizal fungi–nematode interactions. Basic and Applied Ecology, 6: 489-503.
  • Gupta R. & K. Sharma, 1993. A study of the nematicidal activity of allicin-an active principal in garlic, Allium sativum L., against root-knot nematode, Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949. International Journal of Pest Management, 39: 390-392.
  • Hallmann J., & R.A. Sikora, 2011. Endophytic fungi. (Editor: K.G. Davies & Y. Spiegel, Biological Control of Plant-Parasitic Nematodes: Building Coherence between Microbial Ecology and Molecular Mechanisms Progress in Biological Control). 11. Dordrecht, the Netherlands, 227-258.
  • Hardoim P.R., L.S. van Overbeek, G. Berg, A.M. Pirttilä, S. Compant, A. Campisano, M. Döring & A. Sessitsch, 2015. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 79: 293–320.
  • Hsueh Y.P., M.R. Gronquist, E.M. Schwarz, R.D. Nath, C.H. Lee, S. Gharib, F.C. Schroeder, & P.W. Sternberg, 2017. Nematophagous fungus Arthrobotrys oligospora mimics olfactory cues of sex and food to lure its nematode prey. eLife 6, e20023.
  • Isman M.B., A.J. Wan & C.M. Passreiter, 2001. Insecticidal activity of essential oils to the tobacco cutworm, Spodoptera litura. Fitoterapia, 72 (1): 65-68.
  • Jaberian H., K. Piri & J. Nazari, 2013. Phytochemical composition and in vitro antimicrobial and antioxidant activities of some medicinal plants. Food Chemistry, 136 (1): 237–244.
  • Jansson H.B. & L.V. Lopez-Llorca, 2004. Control of nematodes by Fungi. (Editor: M. Dekker, Fungal Biotechnology in Agricultural, Food, and Enviromental Applications). CRC Press, Boca Raton FL, USA, 205-215.
  • Javed N., S.R. Gowen, S.A., El-Hassana, M. Inam-ul Haqa, F. Shahinab & B. Pembroke, 2008. Efficacy of neem (Azadirachta indica) formulations on biology of root-knot nematodes (Meloidogyne javanica) on tomato. Crop Protection, 27:36-43.
  • Jensen J.P., U. Kalwa, S. Pandey & G.L. Tylka, 2018. Avicta and clariva affect the biology of the soybean cyst nematode, Heterodera glycines. Plant Disease, 102 (12): 2480-2486.
  • Kankam F., E.N.K. Sowley & A. Mohammed, 2015. Management of root-knot nematode (Meloidogyne spp.) on okra (Abelmoschus esculuntus (L.) Moench) with aqueous sesame seed extract. International Journal of Agricultural Research, 6 (4): 24-31.
  • Katı T. & S. Mennan, 2006. Kök-ur nematodlari (Meloidogyne spp.) ile biyolojik mücadele. Anadolu Tarım Bilimleri Dergisi, 21(2): 265-274.
  • Kaya H.K., M.M. Aguillera, A. Alumai, H.Y. Choo, M. De la Torre, A. Fodor & R.U. Ehlers, 2006. Status of entomopathogenic nematodes and their symbiotic bacteria from selected countries or regions of the world. Biological control, 38 (1): 134-155.
  • Kumar S. & A. Singh, 2015. Biopesticides: present status and the future prospects. Journal of Fertilizers & Pesticides, 6(2): 100-129.
  • Lamovšek J., G. Urek, & S. Trdan, 2013. Biological control of root-knot nematodes (Meloidogyne spp.): microbes against the pests. Acta Agriculturae Slovenica, 101 (2): 263-275.
  • Li G., & K.-Q. Zhang, 2014. Nematode-toxic fungi and their nematicidal metabolites. (Editor: K.-Q. Zhang & K.D. Hyde, Nematode-Trapping Fungi). Springer, Dordrecht, The Netherland, 313–375.
  • Li J., C. Zou, J. Xu, X. Ji, X. Niu, J. Yang, X. Huang & K.Q. Zhang, 2015. Molecular mechanisms of nematode-nematophagous microbe interactions, basis for biological control of plant-parasitic nematodes. Annual Review of Phytopathology, 53: 67-95.
  • Liolios C.C., K. Graikou, E. Skaltsa & I. Chinou, 2010. Dittany of Crete: a botanical and ethnopharmacological review. Journal of Ethnopharmacology, 131 (2): 229–241.
  • Lopez-Llorca L., J. Macia-Vicente & H.B. Jansson, 2008. Mode of action and interactions of nematophagous fungi. (Editor: A. Ciancio, & K.G. Mukherjee, Integrated Management and Biocontrol of Vegetable and Grain Crops Nematodes). Springer, Dordrecht, Netherlands, 51–76.
  • Lynn O.M., W. Song, J. Shim, J. Kim & K. Lee, 2010. Effects of azadirachtin and neem-based formulations for the control of sweet potato whitefly and root-knot nematode. Journal of Korean Society Applied Biological Chemistry, 53: 598-604.
  • Marrone P.G. 2014. The market and potential for biopesticides. American Chemical Society, (In Biopesticides: state of the art and future opportunities), California, 245-258.
  • Martinuz A., A. Schouten & R.A. Sikora, 2013. Post-infection development of Meloidogyne incognita on tomato treated with the endophytes Fusarium oxysporum strain Fo162 and Rhizobium etli strain G12. BioControl, 58: 95–104.
  • Moosavi M.R. & R. Zare, 2012. Fungi as biological control agents of plant-parasitic nematodes. (Editor: J.M. Merillon & K.G. Ramawat, Plant Defence: Biological Control, Progress in Biological Control). Springer, Dordrecht, Netherlands, 67–107.
  • MRR (Market Research Report) 2020. Biopesticides Market Size, Share & COVID-19 Impact Analysis, By Type (Bioinsecticide, Biofungicide, Bionematicide, and Others), Source (Microbials and Biochemicals), Mode of Application (Foliar Application, Seed Treatment, Soil Treatment, and Others), Crop (Cereals, Oilseeds, Fruits & Vegetables, and Others), and Regional Forecast, 2020-2027. URL: https://www.fortunebusinessinsights.com/ (Erişim tarihi: Mayıs, 2021).
  • Nascimento F.X., M. Espada, P. Barbosa, M.J. Rossi, C.S. Vicente & M. Mota, 2016. Non‐specific transient mutualism between the plant parasitic nematode, Bursaphelenchus xylophilus, and the opportunistic bacterium Serratia quinivorans BXF1, a plant‐growth promoting pine endophyte with antagonistic effects. Environmental Microbiology, 18 (12): 5265-5276.
  • Ndolo D., E. Njugunaa, C.O. Adetunjib, C. Harborc, A. Rowea, A. Den Breeyend, J. Sangeethae, G. Singhf, B. Szewczykg, T.S. Anjorinh, D. Thangaduraii & R. Hospeti, 2019. Research and development of biopesticides: challenges and prospects. Outlooks on Pest Management, 30 (6): 267-276.
  • Nordbring-Hertz B., H.B. Jansson & A. Tunlid, 2006. Nematophagous Fungi. (Encyclopedia of life sciences). John Wiley & Sons, Ltd, Chichester, 1-11.
  • Ntalli N.G., F. Ferrari, L. Giannakou & U. Menkissoglu-Spiroudi, 2010. Phytochemistry and nematicidal activity of the essential oils from 8 greek lamiaceae aromatic plants and 13 terpene components. Journal of Agricultural and Food Chemistry, 58(13): 7856–7863.
  • Oka Y., S. Nacar, E. Putievsky, U. Ravid, Z. Yaniv & Y. Spiegel, 2000. Nematicidal activity of essential oils and their components against the root-knot nematode. Phytopathology, 90(7), 710–715.
  • Oka Y., N. Tkachi, S. Shuker & U. Yerumiyahu, 2007. Enhanced nematicidal activity organic and inorganic ammonia releasing amendments by Azadirachta indica extracts. Journal of Nematology, 39(1): 9-16.
  • Okorie C.C., C.C. Ononuju & I.A. Okwujiako, 2011. Management of Meloidogyne incognita with Pleurotus ostreatus and P. tuberregium in soybean. International Journal of Agriculture and Biology, 13(3): 401-405.
  • Park I.K., J.Y. Park, K.H. Kim, K.S. Choi, I.H. Choi, C.S. Kim & S.C. Shin, 2005. Nematicidal activity of plant essential oils and components from garlic (Allium sativum) and cinnamon (Cinnamomum verum) oils against the pine wood nematode (Bursaphelenchus xylophilus). Nematology, 7 (5): 767–774.
  • Pérez, S.G., M.S. Zavala, L.G. Arias & M.L. Ramos, 2011. Anti-inflammatory activity of some essential oils. Journal of Essential Oil Research, 23 (5), 38–44.
  • Porras-Alfaro A. & P. Bayman, 2011. Hidden fungi, emergent properties: endophytes and microbiomes. Annual Review of Phytopathology, 49: 291–315.
  • Radwan M.A., E.K. El-Maadawy, S.I. Kassem & M.M. Abu-Elamayem, 2009. Oil cakes soil amendment effects on Meloidogyne incognita, root-knot nematode infecting tomato. Archives of Phytopathology and Plant Protection, 42 (1): 58-64.
  • San Martin R. & J. Magunacelaya, 2005. Control of plant-parasitic nematodes with extracts of Quillaja saponaria. Nematology, 7: 577-585.
  • Sayre R.M. & M.P. Starr, 1985. Pasteuria penetrans (ex Thorne 1940) non. rev. comb. n. sp. n. a mycelial and endospore forming bacterium parasite in plant parasitic nematodes. ProcHeminth Society Washington 52: 149–165.
  • Schmutterer H. 1990. Properties and potential of natural pesticides from neem tree Azadirachta indica. Annual Review of Entomology, 35: 271-297.
  • Schüßler A., D. Schwarzott & C. Walker, 2001. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycological Research, 105: 1413–1421.
  • Siddiqui Z.A. & I. Mahmood, 1999. Role of bacteria in the management of plant parasitic nematodes: a review. Bioresource technology, 69(2): 167-179.
  • Siddiqui, I.A. & S.S. Shaukat, 2003. Endophytic bacteria: prospects and opportunities for the biological control of plant-parasitic nematodes. Nematologia Mediterranea, 31 (11): 111-120.
  • Stirling G.R. 2014. Biological control of plant-parasitic nematodes: soil ecosystem management in sustainable agriculture. CABI, 536 p.
  • Subedi P., K. Gattoni, W. Liu, K.S. Lawrence & S.W. Park, 2020. Current utility of plant growth-promoting rhizobacteria as biological control agents towards plant-parasitic nematodes. Plants, 9, 1167.
  • Sülü S.M., İ.A. Bozkurt & S. Soylu, 2016. Bitki büyüme düzenleyici ve biyolojik mücadele etmeni olarak bakteriyel endofitler. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi, 21 (1): 103-111.
  • Thakore Y. 2006. The biopesticide market for global agricultural use. Industrial Biotechnology, 2 (3): 194-208.
  • Tian B., J. Yang & K.Q. Zhang, 2007. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiology Ecology, 61(2): 197-213.
  • Trifonova Z. & A. Atansov, 2011. Control of potato cyst nematode Globodera rostichiensis with some plant extracts and neem products. Bulgarian Journal of Agricultural Science, 17: 623-627.
  • Uysal G. & F.G. Göze Özdemir, 2020. Bitki Paraziti Nematodların Biyolojik Mücadelesinde Bakteriler. Türk Bilimsel Derlemeler Dergisi, 13: 53-72.
  • Veresoglou S.D. & M.C. Rillig, 2012. Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi. Biology Letters, 8: 214–217.
  • Viaene N., D.L. Coyne & B.R. Kerry, 2006. Biological and cultural management. (Editör: R.N. Perry & M. Moens, Plant nematology). CABI, Wallingford, 346-369.
  • Villaverde J.J., P. Sandín-España, B. Sevilla-Morán, C. López-Goti & J.L. Alonso-Prados, 2016. Biopesticides from natural products: current development, legislative framework, and future trends. BioResources, 11 (2): 5618-5640.
  • Vu T., R. Hauschild & R.A. Sikora, 2006. Fusarium oxysporum endophytes induced systemic resistance against Radopholus similis on banana. Nematology, 8(6): 847-852.
  • Waweru B., L. Turoop, E. Kahangi, T. Dubois & D. Coyne, 2013. Potential biological control of lesion nematodes on banana using Kenyan strains of endophytic Fusarium oxysporum. Nematology, 15:101–107.
  • Waweru B., L. Turoop, E. Kahangi, D. Coyne & T. Dubois 2014. Non-pathogenic Fusarium oxysporum endophytes provide field control of nematodes, improving yield of banana (Musa sp.). Biological Control, 74: 82–88.
  • Weibelzahl-Fulton E., D.W. Dickson & E.B. Whitty, 1996. Suppression of Meloidogyne incognita and Meloidogyne javanica by Pasteuria penetrans in field soil. Journal of Nematology, 28 (1): 43-49.
  • Wei J.Z., K. Hale, L. Carta, E. Platzer, C. Wong, S.C. Fang & R.V. Aroian, 2003. Bacillus thuringiensis crystal proteins that target nematodes. Proceedings of the National Academy of Sciences, 100 (5): 2760-2765.
  • Yan X., R.A. Sikora & J. Zheng, 2011. Potential use of cucumber (Cucumis sativus L.) endophytic fungi as seed treatment agents against root-knot nematode Meloidogyne incognita. Journal of Zheijang University Science B, 12: 219–225.
  • Yang J., B. Tian, L. Liang & K.Q. Zhang, 2007. Extracellular enzymes and the pathogenesis of nematophagous fungi. Applied Microbiology and Biotechnolog, 75: 21–31.
  • Yang J., L. Liang, J. Li & K.Q. Zhang, 2013. Nematicidal enzymes from microorganisms and their applications. Applied Microbiology and Biotechnology, 97: 7081-7095.
  • Zargar V., M. Asghari, & A. Dashti. 2015. A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Reviews, 2 (3): 204–226.
  • Zhang, Y., J.M. Foster, L.S. Nelson, D. Ma & C.K. Carlow, 2005. The chitin synthase genes chs-1 and chs-2 are essential for C. elegans development and responsible for chitin deposition in the eggshell and pharynx, respectively. Developmental Biology, 285 (2), 330-339.
  • Zhou W., J.L. Starr, J.L. Krumm & G.A. Sword, 2016. The fungal endophyte Chaetomium globosum negatively affects both above and belowground herbivores in cotton. FEMS Microbiology Ecology, 92 (10): 158.

Bitki paraziti nematodların mücadelesinde kullanılan biyonematisitler

Yıl 2021, Cilt: 12 Sayı: 2, 141 - 156, 15.12.2021
https://doi.org/10.31019/tbmd.938352

Öz

Bitki paraziti nematodlar tarımsal ürünlerde ekonomik kayba yol açan en önemli organizmalardandır. Bu zararlıların mücadelesinde kimyasal mücadelenin yanı sıra çok sayıda mikroorganizma (bakteriler ve funguslar) ve bitkisel kökenli ekstraktlar kullanılmaktadır. Kullanılan bu yöntemler arasından kimyasal mücadele çevre ve insan sağlığına olumsuz etkilere sahipken biyonematisitler son derece güvenilir alternatif bir mücadele tekniğidir. Biyonematisitler, entegre zararlı yönetimi (IPM) programlarında diğer tarımsal girdilerle sinerjik veya katkı maddesi olarak kullanılabilir ve mücadelenin etkinliğini arttırabilir. Bu derlemede bitki paraziti nematodların mücadelesinde kullanılan biyonematisitler; bakteriler, funguslar; ve bitkisel/hayvansal kökenliler olarak incelenmiştir.

Kaynakça

  • Abd-Elgawad M.M.M. & T.H. Askary, 2015. Impact of phytonematodes on agriculture economy. (Editor: T.H. Askary & P.R.P. Martinelli, Biocontrol Agents of Phytonematodes). CAB International, Wallingford, 3–49.
  • Abd-Elgawad M.M.M. & T.H. Askary, 2018. Fungal and bacterial nematicides in integrated nematode management strategies. Egyptian Journal of Biological Pest Control, 28 (1): 1-24.
  • Akyazi F. & D.W. Dickson, 2014. Pasteuria penetrans suppression of root-knot nematode Meloidogyne arenaria race 1 in vegetables. Turkish Journal of Entomology, 38 (2): 173-180.
  • Alabouvette C. & Y. Couteaudier, 1992. Biological control of Fusarium wilts with non-pathogenic Fusarium. (Editor: E.C. Tjamos, R.J. Cook & G.C. Papavizas, Biological control of plant diseases). Plenum, New York, 415–426.
  • Balcı H. & E. Durmuşoğlu, 2020. Bitki koruma ürünü olarak biyopestisitler: tanımları, sınıflandırılmaları, mevzuat ve pazarları üzerine bir değerlendirme. Türkiye Biyolojik Mücadele Dergisi, 11(2): 252-265.
  • Berg G. & J. Hallmann, 2006. Control of plant pathogenic fungi with bacterial endophytes. (Editor: T.N. Sieber, C.J.C. Boyle & B.J.E. Schulz, Microbial root endophytes). Springer, Berlin, Heidelberg, 53-69.
  • Braga F.R. & J.V. Araújo, 2014. Nematophagous fungi for biological control of gastrointestinal nematodes in domestic animals. Applied Microbiology and Biotechnology, 98: 71-82.
  • Camo J., A. Lorés, D. Djenane, J.A. Beltrán & P. Roncalés, 2011. Display life of beef packaged with an antioxidant active film as a function of the concentration of oregano extract. Meat Science, 88 (1): 174–178.
  • Chen Z.X. & D. Dickson, 1998. Review of Pasteuria penetrans: Biology, ecology, and biological control potential. Journal of Nematology, 30 (3): 313.
  • Chen Q. & D. Peng, 2019. Nematode chitin and application. Targeting Chitin-containing Organisms, 209-219.
  • Corzo-Martinez M., N. Corzo & M. Villamiel, 2007. Biological properties of onions and garlic. Trends in Food Science & Technology, 18 (12): 609–625.
  • Cumagun C.J.R., & M.R. Moosavi, 2015. Significance of Biocontrol Agents of Phytonematodes. (Editor: T.H. Askary & P.R.P. Martinelli, Biocontrol Agents of Phytonematodes). CAB International, Wallingford, 50–78.
  • Da Rosa, C. G., M.V. De Oliveira Brisola Maciel, S.M. De Carvalho, A.P.Z. De Melo, B. Jummes, T. Da Silva, S.M. Martelli, M.A. Villetti, F.C. Bertoldi & P.L.M. Barreto, 2015. Characterization and evaluation of physicochemical and antimicrobial properties of zein nanoparticles loaded with phenolics monoterpenes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 481: 337–344.
  • Eder R., E. Consoli, J. Krauss & P. Dahlin, 2021. Polysulfides applied as formulated garlic extract to protect tomato plants against the root-knot nematode Meloidogyne incognita. Plants, 10: 394.
  • Engelbrecht, G., I. Horak, P.J. Jansen van Rensburg & S. Claassens 2018. Bacillus-based bionematicides: development, modes of action and commercialisation. Biocontrol Science and Technology, 28 (7): 629-653. EPA (Environmental Protection Agency) 2013. Regulating biopesticides. URL: www.epa.gov/opp00001/biopesticides (Erişim tarihi: Nisan, 2021).
  • Erazo Sandoval N.S., M.M. Echeverría Guadalupe, J.L. Jave Nakayo, H.A. León Reyes, V.A. Lindao Córdova, J.C. Manzano Ocaña & N.M. Inca Chunata, 2020. Effect of Pleurotus ostreatus (Jacq.) and Trichoderma harzianum (Rifai) on Meloidogyne incognita (Kofoid & White) in tomato (Solanum lycopersicum Mill.). Acta Scientiarum Biological Sciences, 42(1): e47522.
  • FAO (Food and Agriculture Organization of the United Nations) 2017. Sustainable management of the fall armyworm in Africa. FAO program for action. Food and agriculture organisation of the united nations. URL: http://www.fao.org/3/a-bt417e.pdf (Erişim tarihi: Nisan, 2021).
  • Francis G. 2002. The biological action of saponins in animal systems: a review. The British Journal of Nutrition, 88: 587–605.
  • Gera Hol W.H., & R. Cook, 2005. An overview of arbuscular mycorrhizal fungi–nematode interactions. Basic and Applied Ecology, 6: 489-503.
  • Gupta R. & K. Sharma, 1993. A study of the nematicidal activity of allicin-an active principal in garlic, Allium sativum L., against root-knot nematode, Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949. International Journal of Pest Management, 39: 390-392.
  • Hallmann J., & R.A. Sikora, 2011. Endophytic fungi. (Editor: K.G. Davies & Y. Spiegel, Biological Control of Plant-Parasitic Nematodes: Building Coherence between Microbial Ecology and Molecular Mechanisms Progress in Biological Control). 11. Dordrecht, the Netherlands, 227-258.
  • Hardoim P.R., L.S. van Overbeek, G. Berg, A.M. Pirttilä, S. Compant, A. Campisano, M. Döring & A. Sessitsch, 2015. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 79: 293–320.
  • Hsueh Y.P., M.R. Gronquist, E.M. Schwarz, R.D. Nath, C.H. Lee, S. Gharib, F.C. Schroeder, & P.W. Sternberg, 2017. Nematophagous fungus Arthrobotrys oligospora mimics olfactory cues of sex and food to lure its nematode prey. eLife 6, e20023.
  • Isman M.B., A.J. Wan & C.M. Passreiter, 2001. Insecticidal activity of essential oils to the tobacco cutworm, Spodoptera litura. Fitoterapia, 72 (1): 65-68.
  • Jaberian H., K. Piri & J. Nazari, 2013. Phytochemical composition and in vitro antimicrobial and antioxidant activities of some medicinal plants. Food Chemistry, 136 (1): 237–244.
  • Jansson H.B. & L.V. Lopez-Llorca, 2004. Control of nematodes by Fungi. (Editor: M. Dekker, Fungal Biotechnology in Agricultural, Food, and Enviromental Applications). CRC Press, Boca Raton FL, USA, 205-215.
  • Javed N., S.R. Gowen, S.A., El-Hassana, M. Inam-ul Haqa, F. Shahinab & B. Pembroke, 2008. Efficacy of neem (Azadirachta indica) formulations on biology of root-knot nematodes (Meloidogyne javanica) on tomato. Crop Protection, 27:36-43.
  • Jensen J.P., U. Kalwa, S. Pandey & G.L. Tylka, 2018. Avicta and clariva affect the biology of the soybean cyst nematode, Heterodera glycines. Plant Disease, 102 (12): 2480-2486.
  • Kankam F., E.N.K. Sowley & A. Mohammed, 2015. Management of root-knot nematode (Meloidogyne spp.) on okra (Abelmoschus esculuntus (L.) Moench) with aqueous sesame seed extract. International Journal of Agricultural Research, 6 (4): 24-31.
  • Katı T. & S. Mennan, 2006. Kök-ur nematodlari (Meloidogyne spp.) ile biyolojik mücadele. Anadolu Tarım Bilimleri Dergisi, 21(2): 265-274.
  • Kaya H.K., M.M. Aguillera, A. Alumai, H.Y. Choo, M. De la Torre, A. Fodor & R.U. Ehlers, 2006. Status of entomopathogenic nematodes and their symbiotic bacteria from selected countries or regions of the world. Biological control, 38 (1): 134-155.
  • Kumar S. & A. Singh, 2015. Biopesticides: present status and the future prospects. Journal of Fertilizers & Pesticides, 6(2): 100-129.
  • Lamovšek J., G. Urek, & S. Trdan, 2013. Biological control of root-knot nematodes (Meloidogyne spp.): microbes against the pests. Acta Agriculturae Slovenica, 101 (2): 263-275.
  • Li G., & K.-Q. Zhang, 2014. Nematode-toxic fungi and their nematicidal metabolites. (Editor: K.-Q. Zhang & K.D. Hyde, Nematode-Trapping Fungi). Springer, Dordrecht, The Netherland, 313–375.
  • Li J., C. Zou, J. Xu, X. Ji, X. Niu, J. Yang, X. Huang & K.Q. Zhang, 2015. Molecular mechanisms of nematode-nematophagous microbe interactions, basis for biological control of plant-parasitic nematodes. Annual Review of Phytopathology, 53: 67-95.
  • Liolios C.C., K. Graikou, E. Skaltsa & I. Chinou, 2010. Dittany of Crete: a botanical and ethnopharmacological review. Journal of Ethnopharmacology, 131 (2): 229–241.
  • Lopez-Llorca L., J. Macia-Vicente & H.B. Jansson, 2008. Mode of action and interactions of nematophagous fungi. (Editor: A. Ciancio, & K.G. Mukherjee, Integrated Management and Biocontrol of Vegetable and Grain Crops Nematodes). Springer, Dordrecht, Netherlands, 51–76.
  • Lynn O.M., W. Song, J. Shim, J. Kim & K. Lee, 2010. Effects of azadirachtin and neem-based formulations for the control of sweet potato whitefly and root-knot nematode. Journal of Korean Society Applied Biological Chemistry, 53: 598-604.
  • Marrone P.G. 2014. The market and potential for biopesticides. American Chemical Society, (In Biopesticides: state of the art and future opportunities), California, 245-258.
  • Martinuz A., A. Schouten & R.A. Sikora, 2013. Post-infection development of Meloidogyne incognita on tomato treated with the endophytes Fusarium oxysporum strain Fo162 and Rhizobium etli strain G12. BioControl, 58: 95–104.
  • Moosavi M.R. & R. Zare, 2012. Fungi as biological control agents of plant-parasitic nematodes. (Editor: J.M. Merillon & K.G. Ramawat, Plant Defence: Biological Control, Progress in Biological Control). Springer, Dordrecht, Netherlands, 67–107.
  • MRR (Market Research Report) 2020. Biopesticides Market Size, Share & COVID-19 Impact Analysis, By Type (Bioinsecticide, Biofungicide, Bionematicide, and Others), Source (Microbials and Biochemicals), Mode of Application (Foliar Application, Seed Treatment, Soil Treatment, and Others), Crop (Cereals, Oilseeds, Fruits & Vegetables, and Others), and Regional Forecast, 2020-2027. URL: https://www.fortunebusinessinsights.com/ (Erişim tarihi: Mayıs, 2021).
  • Nascimento F.X., M. Espada, P. Barbosa, M.J. Rossi, C.S. Vicente & M. Mota, 2016. Non‐specific transient mutualism between the plant parasitic nematode, Bursaphelenchus xylophilus, and the opportunistic bacterium Serratia quinivorans BXF1, a plant‐growth promoting pine endophyte with antagonistic effects. Environmental Microbiology, 18 (12): 5265-5276.
  • Ndolo D., E. Njugunaa, C.O. Adetunjib, C. Harborc, A. Rowea, A. Den Breeyend, J. Sangeethae, G. Singhf, B. Szewczykg, T.S. Anjorinh, D. Thangaduraii & R. Hospeti, 2019. Research and development of biopesticides: challenges and prospects. Outlooks on Pest Management, 30 (6): 267-276.
  • Nordbring-Hertz B., H.B. Jansson & A. Tunlid, 2006. Nematophagous Fungi. (Encyclopedia of life sciences). John Wiley & Sons, Ltd, Chichester, 1-11.
  • Ntalli N.G., F. Ferrari, L. Giannakou & U. Menkissoglu-Spiroudi, 2010. Phytochemistry and nematicidal activity of the essential oils from 8 greek lamiaceae aromatic plants and 13 terpene components. Journal of Agricultural and Food Chemistry, 58(13): 7856–7863.
  • Oka Y., S. Nacar, E. Putievsky, U. Ravid, Z. Yaniv & Y. Spiegel, 2000. Nematicidal activity of essential oils and their components against the root-knot nematode. Phytopathology, 90(7), 710–715.
  • Oka Y., N. Tkachi, S. Shuker & U. Yerumiyahu, 2007. Enhanced nematicidal activity organic and inorganic ammonia releasing amendments by Azadirachta indica extracts. Journal of Nematology, 39(1): 9-16.
  • Okorie C.C., C.C. Ononuju & I.A. Okwujiako, 2011. Management of Meloidogyne incognita with Pleurotus ostreatus and P. tuberregium in soybean. International Journal of Agriculture and Biology, 13(3): 401-405.
  • Park I.K., J.Y. Park, K.H. Kim, K.S. Choi, I.H. Choi, C.S. Kim & S.C. Shin, 2005. Nematicidal activity of plant essential oils and components from garlic (Allium sativum) and cinnamon (Cinnamomum verum) oils against the pine wood nematode (Bursaphelenchus xylophilus). Nematology, 7 (5): 767–774.
  • Pérez, S.G., M.S. Zavala, L.G. Arias & M.L. Ramos, 2011. Anti-inflammatory activity of some essential oils. Journal of Essential Oil Research, 23 (5), 38–44.
  • Porras-Alfaro A. & P. Bayman, 2011. Hidden fungi, emergent properties: endophytes and microbiomes. Annual Review of Phytopathology, 49: 291–315.
  • Radwan M.A., E.K. El-Maadawy, S.I. Kassem & M.M. Abu-Elamayem, 2009. Oil cakes soil amendment effects on Meloidogyne incognita, root-knot nematode infecting tomato. Archives of Phytopathology and Plant Protection, 42 (1): 58-64.
  • San Martin R. & J. Magunacelaya, 2005. Control of plant-parasitic nematodes with extracts of Quillaja saponaria. Nematology, 7: 577-585.
  • Sayre R.M. & M.P. Starr, 1985. Pasteuria penetrans (ex Thorne 1940) non. rev. comb. n. sp. n. a mycelial and endospore forming bacterium parasite in plant parasitic nematodes. ProcHeminth Society Washington 52: 149–165.
  • Schmutterer H. 1990. Properties and potential of natural pesticides from neem tree Azadirachta indica. Annual Review of Entomology, 35: 271-297.
  • Schüßler A., D. Schwarzott & C. Walker, 2001. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycological Research, 105: 1413–1421.
  • Siddiqui Z.A. & I. Mahmood, 1999. Role of bacteria in the management of plant parasitic nematodes: a review. Bioresource technology, 69(2): 167-179.
  • Siddiqui, I.A. & S.S. Shaukat, 2003. Endophytic bacteria: prospects and opportunities for the biological control of plant-parasitic nematodes. Nematologia Mediterranea, 31 (11): 111-120.
  • Stirling G.R. 2014. Biological control of plant-parasitic nematodes: soil ecosystem management in sustainable agriculture. CABI, 536 p.
  • Subedi P., K. Gattoni, W. Liu, K.S. Lawrence & S.W. Park, 2020. Current utility of plant growth-promoting rhizobacteria as biological control agents towards plant-parasitic nematodes. Plants, 9, 1167.
  • Sülü S.M., İ.A. Bozkurt & S. Soylu, 2016. Bitki büyüme düzenleyici ve biyolojik mücadele etmeni olarak bakteriyel endofitler. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi, 21 (1): 103-111.
  • Thakore Y. 2006. The biopesticide market for global agricultural use. Industrial Biotechnology, 2 (3): 194-208.
  • Tian B., J. Yang & K.Q. Zhang, 2007. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiology Ecology, 61(2): 197-213.
  • Trifonova Z. & A. Atansov, 2011. Control of potato cyst nematode Globodera rostichiensis with some plant extracts and neem products. Bulgarian Journal of Agricultural Science, 17: 623-627.
  • Uysal G. & F.G. Göze Özdemir, 2020. Bitki Paraziti Nematodların Biyolojik Mücadelesinde Bakteriler. Türk Bilimsel Derlemeler Dergisi, 13: 53-72.
  • Veresoglou S.D. & M.C. Rillig, 2012. Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi. Biology Letters, 8: 214–217.
  • Viaene N., D.L. Coyne & B.R. Kerry, 2006. Biological and cultural management. (Editör: R.N. Perry & M. Moens, Plant nematology). CABI, Wallingford, 346-369.
  • Villaverde J.J., P. Sandín-España, B. Sevilla-Morán, C. López-Goti & J.L. Alonso-Prados, 2016. Biopesticides from natural products: current development, legislative framework, and future trends. BioResources, 11 (2): 5618-5640.
  • Vu T., R. Hauschild & R.A. Sikora, 2006. Fusarium oxysporum endophytes induced systemic resistance against Radopholus similis on banana. Nematology, 8(6): 847-852.
  • Waweru B., L. Turoop, E. Kahangi, T. Dubois & D. Coyne, 2013. Potential biological control of lesion nematodes on banana using Kenyan strains of endophytic Fusarium oxysporum. Nematology, 15:101–107.
  • Waweru B., L. Turoop, E. Kahangi, D. Coyne & T. Dubois 2014. Non-pathogenic Fusarium oxysporum endophytes provide field control of nematodes, improving yield of banana (Musa sp.). Biological Control, 74: 82–88.
  • Weibelzahl-Fulton E., D.W. Dickson & E.B. Whitty, 1996. Suppression of Meloidogyne incognita and Meloidogyne javanica by Pasteuria penetrans in field soil. Journal of Nematology, 28 (1): 43-49.
  • Wei J.Z., K. Hale, L. Carta, E. Platzer, C. Wong, S.C. Fang & R.V. Aroian, 2003. Bacillus thuringiensis crystal proteins that target nematodes. Proceedings of the National Academy of Sciences, 100 (5): 2760-2765.
  • Yan X., R.A. Sikora & J. Zheng, 2011. Potential use of cucumber (Cucumis sativus L.) endophytic fungi as seed treatment agents against root-knot nematode Meloidogyne incognita. Journal of Zheijang University Science B, 12: 219–225.
  • Yang J., B. Tian, L. Liang & K.Q. Zhang, 2007. Extracellular enzymes and the pathogenesis of nematophagous fungi. Applied Microbiology and Biotechnolog, 75: 21–31.
  • Yang J., L. Liang, J. Li & K.Q. Zhang, 2013. Nematicidal enzymes from microorganisms and their applications. Applied Microbiology and Biotechnology, 97: 7081-7095.
  • Zargar V., M. Asghari, & A. Dashti. 2015. A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Reviews, 2 (3): 204–226.
  • Zhang, Y., J.M. Foster, L.S. Nelson, D. Ma & C.K. Carlow, 2005. The chitin synthase genes chs-1 and chs-2 are essential for C. elegans development and responsible for chitin deposition in the eggshell and pharynx, respectively. Developmental Biology, 285 (2), 330-339.
  • Zhou W., J.L. Starr, J.L. Krumm & G.A. Sword, 2016. The fungal endophyte Chaetomium globosum negatively affects both above and belowground herbivores in cotton. FEMS Microbiology Ecology, 92 (10): 158.
Toplam 80 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat Mühendisliği
Bölüm Makaleler
Yazarlar

Gülsüm Uysal 0000-0003-1722-2518

İbrahim Mıstanoğlu 0000-0002-8635-0321

Melih Koca 0000-0003-1930-1121

Zübeyir Devran 0000-0001-7150-284X

Yayımlanma Tarihi 15 Aralık 2021
Gönderilme Tarihi 17 Mayıs 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 12 Sayı: 2

Kaynak Göster

APA Uysal, G., Mıstanoğlu, İ., Koca, M., Devran, Z. (2021). Bitki paraziti nematodların mücadelesinde kullanılan biyonematisitler. Türkiye Biyolojik Mücadele Dergisi, 12(2), 141-156. https://doi.org/10.31019/tbmd.938352
AMA Uysal G, Mıstanoğlu İ, Koca M, Devran Z. Bitki paraziti nematodların mücadelesinde kullanılan biyonematisitler. Türk. biyo. müc. derg. Aralık 2021;12(2):141-156. doi:10.31019/tbmd.938352
Chicago Uysal, Gülsüm, İbrahim Mıstanoğlu, Melih Koca, ve Zübeyir Devran. “Bitki Paraziti nematodların mücadelesinde kullanılan Biyonematisitler”. Türkiye Biyolojik Mücadele Dergisi 12, sy. 2 (Aralık 2021): 141-56. https://doi.org/10.31019/tbmd.938352.
EndNote Uysal G, Mıstanoğlu İ, Koca M, Devran Z (01 Aralık 2021) Bitki paraziti nematodların mücadelesinde kullanılan biyonematisitler. Türkiye Biyolojik Mücadele Dergisi 12 2 141–156.
IEEE G. Uysal, İ. Mıstanoğlu, M. Koca, ve Z. Devran, “Bitki paraziti nematodların mücadelesinde kullanılan biyonematisitler”, Türk. biyo. müc. derg, c. 12, sy. 2, ss. 141–156, 2021, doi: 10.31019/tbmd.938352.
ISNAD Uysal, Gülsüm vd. “Bitki Paraziti nematodların mücadelesinde kullanılan Biyonematisitler”. Türkiye Biyolojik Mücadele Dergisi 12/2 (Aralık 2021), 141-156. https://doi.org/10.31019/tbmd.938352.
JAMA Uysal G, Mıstanoğlu İ, Koca M, Devran Z. Bitki paraziti nematodların mücadelesinde kullanılan biyonematisitler. Türk. biyo. müc. derg. 2021;12:141–156.
MLA Uysal, Gülsüm vd. “Bitki Paraziti nematodların mücadelesinde kullanılan Biyonematisitler”. Türkiye Biyolojik Mücadele Dergisi, c. 12, sy. 2, 2021, ss. 141-56, doi:10.31019/tbmd.938352.
Vancouver Uysal G, Mıstanoğlu İ, Koca M, Devran Z. Bitki paraziti nematodların mücadelesinde kullanılan biyonematisitler. Türk. biyo. müc. derg. 2021;12(2):141-56.