Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2017, Cilt: 1 Sayı: 2, 35 - 44, 15.12.2017

Öz

Kaynakça

  • [1] Yuxi Zhao, Xiaowen Zhang, Weiliang Jin, Influence of environment on the development of corrosion product-filled paste and a corrosion layer at the steel/concrete interface, Corrosion Sciencehttp://dx.doi.org/10.1016/j.corsci.2017.03.026.
  • [2] D.-H. Xia, et al., Atmospheric corrosion assessed from corrosion images using fuzzy Kolmogorov–Sinai entropy, Corros. Sci. (2017), http://dx.doi.org/10.1016/j.corsci.2017.02.015.
  • [3] N.D. Alexopoulos, et al., Synergy of corrosion-induced micro-cracking and hydrogen embrittlement on the structural integrity of aluminium alloy (Al-Cu-Mg) 2024, Corros. Sci. (2017), http://dx.doi.org/10.1016/j.corsci.2017.03.001.
  • [4] Jinlong Wang, Minghui Chen, Yuxian Cheng, Lanlan Yang, Zebin Bao, Li Liu, Shenglong Zhu, Fuhui Wang, Hot corrosion of arc ion plating NiCrAlY and sputtered nanocrystalline coatings on a nickel-based single-crystal superalloy, Corrosion Sciencehttp://dx.doi.org/10.1016/j.corsci.2017.04.004.
  • [5] Yuxi Zhao, Xiaowen Zhang, Weiliang Jin, Influence of environment on the development of corrosion product-filled paste and a corrosion layer at the steel/concrete interface, Corrosion Sciencehttp://dx.doi.org/10.1016/j.corsci.2017.03.026.
  • [6] L. Wei, et al., Effect of exposure angle on the corrosion behavior of X70 steel under supercritical CO2 and gaseous CO2 environments, Corros. Sci. (2017), http://dx.doi.org/10.1016/j.corsci.2017.03.011.
  • [7] Y. Han, et al., Effects of electropolishing on corrosion and stress corrosion cracking of Alloy 182 in high temperature water, Corros. Sci. (2017), http://dx.doi.org/10.1016/j.corsci.2017.03.004.
  • [8] T.J. Watson, et al., Salt fog corrosion behavior in a powder-processed icosahedral-phase-strengthened aluminum alloy, Corros. Sci. (2017), http://dx.doi.org/10.1016/j.corsci.2017.03.010.
  • [9] H.N. Krogstad, R. Johnsen, Corrosion properties of nickel-aluminium bronze in natural seawater—Effect of galvanic coupling to UNS S31603, Corros. Sci. (2017), http://dx.doi.org/10.1016/j.corsci.2017.03.016.
  • [10] Xianghong Li, Shuduan Deng, Tong Lin, Xiaoguang Xie, Guanben Du, 2-Mercaptopyrimidine as an effective inhibitor for the corrosion of cold rolled steel in HNO3 solution, Corrosion Science 118 (2017) 202–216.
  • [11] Y. Qiang, et al., Experimental and theoretical studies of four allyl imidazolium-based ionic liquids as green inhibitors for copper corrosion in sulfuric acid, Corros. Sci. (2017), http://dx.doi.org/10.1016/j.corsci.2017.02.021.
  • [12] Zohreh Salarvand, Mehdi Amirnasr, Milad Talebian, Keyvan Raeissi, Soraia Meghdadi, Enhanced corrosion resistance of mild steel in 1 M HCl solution by trace amount of 2-phenyl-benzothiazole derivatives: Experimental, quantum chemical calculations and molecular dynamics (MD) simulation studies, Corrosion Science 114 (2017) 133–145.
  • [13] E. M. Mabrouk, H. Shokry, K. M. Abu Al-Naja, Inhibition of aluminum corrosion in acid solution by mono- and bis-azo naphthylamine dyes. Part 1, Chem Met Alloys 4 (2011) 98–106.
  • [14] GaussView, Version 5, Roy Dennington, Todd Keith, and John Millam, Semichem Inc., Shawnee Mission, KS, 2009.
  • [15] Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
  • [16] Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
  • [17] PerkinElmer, 2012. ChemBioDraw Ultra Version (13.0.0.3015), CambridgeSoft Waltham, MA, USA.
  • [18] C. C. J. Roothaan, New Developments in Molecular Orbital Theory, Rev Mod Phys 23 (1951) 69.
  • [19] A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J Chem Phys 98 (1993) 5648-5652.
  • [20] Y. Zhao, D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals". Theor Chem Account 120 (2006) 215–241.
  • [21] K. Sayin, S. E. Kariper, T. A. Sayin, D. Karakaş, Theoretical spectroscopic study of seven zinc (II) complex with macrocyclic Schiff-base ligand. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 133 (2014) 348-356.
  • [22] S. G. Sagdinc, D. Erdas, I. Gunduz, A. E. Sahinturk, FT-IR and FT-Raman spectra, molecular structure and first-order molecular hyperpolarizabilities of a potential antihistaminic drug, cyproheptadine HCl. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 134 (2015) 350-360.
  • [23] A. A. Soayed, A. F. El-Husseiny, Potentiometry and geometrical structure of some azodye compounds and their metal complexes. Journal of Molecular Liquids 209 (2015) 258-266.
  • [24] W. H. Mahmoud, N. F. Mahmoud, G. G. Mohamed, A. A. El-Bindary, A. Z. El-Sonbati, Supramolecular structural, thermal properties and biological activity of 3-(2-methoxyphenoxy) propane-1, 2-diol metal complexes. Journal of Molecular Structure 1086 (2015) 266-275.
  • [25] A. Z. El-Sonbati, M. A. Diab, A. A. El-Bindary, M. M. Ghoneim, M. T. Mohesien, M. A. El-Kader, Polymeric complexes—LXI. Supramolecular structure, thermal properties, SS-DNA binding activity and antimicrobial activities of polymeric complexes of rhodanine hydrazone compounds. Journal of Molecular Liquids 215 (2016) 711-739.
  • [26] A. A. El-Bindary, M. M. Ghoneim, M. A. Diab, A. Z. El-Sonbati, L. S. Serag, Thermodynamic studies of N-allylrhodanine derivatives and their metal complexes. Journal of Molecular Liquids 223 (2016) 448-461.
  • [27] K. Sayin, N. Kurtoglu, M. Kose, D. Karakas, M. Kurtoglu, Computational and experimental studies of 2-[(E)-hydrazinylidenemethyl]-6-methoxy-4-[(E)-phenyldiazenyl] phenol and its tautomers. Journal of Molecular Structure 1119 (2016) 413-422.
  • [28] Ayhan Üngördü, Nurten Tezer, The solvent (water) and metal effects on HOMO-LUMO gaps of guanine base pair: A computational study, Journal of Molecular Graphics and Modellinghttp://dx.doi.org/10.1016/j.jmgm.2017.04.015.
  • [29] T Koopmans, Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms, Physica 1 (1934) 104–113.
  • [30] Nihat Karakus, Koray Sayin, The investigation of corrosion inhibition efficiency on some benzaldehyde thiosemicarbazones and their thiole tautomers: Computational study, Journal of the Taiwan Institute of Chemical Engineers 48 (2015) 95–102.

Determination of Inhibition Mechanism of Mono-Azo Naphthylamine Dyes: A Computational Corrosion Study

Yıl 2017, Cilt: 1 Sayı: 2, 35 - 44, 15.12.2017

Öz

Some mono azo naphthylamine dyes are optimized by using HF, B3LYP and M062X with 6-31G(d) level in gas phase. The best level is found as HF/6-31G(d) level in gas phase. A well agreement between experimental results and calculated results are found. Contour diagram of frontier molecular orbitals, MEP maps, MEP contours, NBO analyses and Fukui functions are calculated and examined in detail to foresee the corrosion protection mechanism. Regression and matrix analyses are used to derive the new theoretical formula. Experimental and theoretical formula are compared with each other and well agreement is calculated among of them.

Kaynakça

  • [1] Yuxi Zhao, Xiaowen Zhang, Weiliang Jin, Influence of environment on the development of corrosion product-filled paste and a corrosion layer at the steel/concrete interface, Corrosion Sciencehttp://dx.doi.org/10.1016/j.corsci.2017.03.026.
  • [2] D.-H. Xia, et al., Atmospheric corrosion assessed from corrosion images using fuzzy Kolmogorov–Sinai entropy, Corros. Sci. (2017), http://dx.doi.org/10.1016/j.corsci.2017.02.015.
  • [3] N.D. Alexopoulos, et al., Synergy of corrosion-induced micro-cracking and hydrogen embrittlement on the structural integrity of aluminium alloy (Al-Cu-Mg) 2024, Corros. Sci. (2017), http://dx.doi.org/10.1016/j.corsci.2017.03.001.
  • [4] Jinlong Wang, Minghui Chen, Yuxian Cheng, Lanlan Yang, Zebin Bao, Li Liu, Shenglong Zhu, Fuhui Wang, Hot corrosion of arc ion plating NiCrAlY and sputtered nanocrystalline coatings on a nickel-based single-crystal superalloy, Corrosion Sciencehttp://dx.doi.org/10.1016/j.corsci.2017.04.004.
  • [5] Yuxi Zhao, Xiaowen Zhang, Weiliang Jin, Influence of environment on the development of corrosion product-filled paste and a corrosion layer at the steel/concrete interface, Corrosion Sciencehttp://dx.doi.org/10.1016/j.corsci.2017.03.026.
  • [6] L. Wei, et al., Effect of exposure angle on the corrosion behavior of X70 steel under supercritical CO2 and gaseous CO2 environments, Corros. Sci. (2017), http://dx.doi.org/10.1016/j.corsci.2017.03.011.
  • [7] Y. Han, et al., Effects of electropolishing on corrosion and stress corrosion cracking of Alloy 182 in high temperature water, Corros. Sci. (2017), http://dx.doi.org/10.1016/j.corsci.2017.03.004.
  • [8] T.J. Watson, et al., Salt fog corrosion behavior in a powder-processed icosahedral-phase-strengthened aluminum alloy, Corros. Sci. (2017), http://dx.doi.org/10.1016/j.corsci.2017.03.010.
  • [9] H.N. Krogstad, R. Johnsen, Corrosion properties of nickel-aluminium bronze in natural seawater—Effect of galvanic coupling to UNS S31603, Corros. Sci. (2017), http://dx.doi.org/10.1016/j.corsci.2017.03.016.
  • [10] Xianghong Li, Shuduan Deng, Tong Lin, Xiaoguang Xie, Guanben Du, 2-Mercaptopyrimidine as an effective inhibitor for the corrosion of cold rolled steel in HNO3 solution, Corrosion Science 118 (2017) 202–216.
  • [11] Y. Qiang, et al., Experimental and theoretical studies of four allyl imidazolium-based ionic liquids as green inhibitors for copper corrosion in sulfuric acid, Corros. Sci. (2017), http://dx.doi.org/10.1016/j.corsci.2017.02.021.
  • [12] Zohreh Salarvand, Mehdi Amirnasr, Milad Talebian, Keyvan Raeissi, Soraia Meghdadi, Enhanced corrosion resistance of mild steel in 1 M HCl solution by trace amount of 2-phenyl-benzothiazole derivatives: Experimental, quantum chemical calculations and molecular dynamics (MD) simulation studies, Corrosion Science 114 (2017) 133–145.
  • [13] E. M. Mabrouk, H. Shokry, K. M. Abu Al-Naja, Inhibition of aluminum corrosion in acid solution by mono- and bis-azo naphthylamine dyes. Part 1, Chem Met Alloys 4 (2011) 98–106.
  • [14] GaussView, Version 5, Roy Dennington, Todd Keith, and John Millam, Semichem Inc., Shawnee Mission, KS, 2009.
  • [15] Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
  • [16] Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
  • [17] PerkinElmer, 2012. ChemBioDraw Ultra Version (13.0.0.3015), CambridgeSoft Waltham, MA, USA.
  • [18] C. C. J. Roothaan, New Developments in Molecular Orbital Theory, Rev Mod Phys 23 (1951) 69.
  • [19] A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J Chem Phys 98 (1993) 5648-5652.
  • [20] Y. Zhao, D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals". Theor Chem Account 120 (2006) 215–241.
  • [21] K. Sayin, S. E. Kariper, T. A. Sayin, D. Karakaş, Theoretical spectroscopic study of seven zinc (II) complex with macrocyclic Schiff-base ligand. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 133 (2014) 348-356.
  • [22] S. G. Sagdinc, D. Erdas, I. Gunduz, A. E. Sahinturk, FT-IR and FT-Raman spectra, molecular structure and first-order molecular hyperpolarizabilities of a potential antihistaminic drug, cyproheptadine HCl. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 134 (2015) 350-360.
  • [23] A. A. Soayed, A. F. El-Husseiny, Potentiometry and geometrical structure of some azodye compounds and their metal complexes. Journal of Molecular Liquids 209 (2015) 258-266.
  • [24] W. H. Mahmoud, N. F. Mahmoud, G. G. Mohamed, A. A. El-Bindary, A. Z. El-Sonbati, Supramolecular structural, thermal properties and biological activity of 3-(2-methoxyphenoxy) propane-1, 2-diol metal complexes. Journal of Molecular Structure 1086 (2015) 266-275.
  • [25] A. Z. El-Sonbati, M. A. Diab, A. A. El-Bindary, M. M. Ghoneim, M. T. Mohesien, M. A. El-Kader, Polymeric complexes—LXI. Supramolecular structure, thermal properties, SS-DNA binding activity and antimicrobial activities of polymeric complexes of rhodanine hydrazone compounds. Journal of Molecular Liquids 215 (2016) 711-739.
  • [26] A. A. El-Bindary, M. M. Ghoneim, M. A. Diab, A. Z. El-Sonbati, L. S. Serag, Thermodynamic studies of N-allylrhodanine derivatives and their metal complexes. Journal of Molecular Liquids 223 (2016) 448-461.
  • [27] K. Sayin, N. Kurtoglu, M. Kose, D. Karakas, M. Kurtoglu, Computational and experimental studies of 2-[(E)-hydrazinylidenemethyl]-6-methoxy-4-[(E)-phenyldiazenyl] phenol and its tautomers. Journal of Molecular Structure 1119 (2016) 413-422.
  • [28] Ayhan Üngördü, Nurten Tezer, The solvent (water) and metal effects on HOMO-LUMO gaps of guanine base pair: A computational study, Journal of Molecular Graphics and Modellinghttp://dx.doi.org/10.1016/j.jmgm.2017.04.015.
  • [29] T Koopmans, Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms, Physica 1 (1934) 104–113.
  • [30] Nihat Karakus, Koray Sayin, The investigation of corrosion inhibition efficiency on some benzaldehyde thiosemicarbazones and their thiole tautomers: Computational study, Journal of the Taiwan Institute of Chemical Engineers 48 (2015) 95–102.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği
Bölüm Research Article
Yazarlar

Nihat Karakuş

Yayımlanma Tarihi 15 Aralık 2017
Gönderilme Tarihi 27 Ekim 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 1 Sayı: 2

Kaynak Göster

APA Karakuş, N. (2017). Determination of Inhibition Mechanism of Mono-Azo Naphthylamine Dyes: A Computational Corrosion Study. Turkish Computational and Theoretical Chemistry, 1(2), 35-44.
AMA Karakuş N. Determination of Inhibition Mechanism of Mono-Azo Naphthylamine Dyes: A Computational Corrosion Study. Turkish Comp Theo Chem (TC&TC). Aralık 2017;1(2):35-44.
Chicago Karakuş, Nihat. “Determination of Inhibition Mechanism of Mono-Azo Naphthylamine Dyes: A Computational Corrosion Study”. Turkish Computational and Theoretical Chemistry 1, sy. 2 (Aralık 2017): 35-44.
EndNote Karakuş N (01 Aralık 2017) Determination of Inhibition Mechanism of Mono-Azo Naphthylamine Dyes: A Computational Corrosion Study. Turkish Computational and Theoretical Chemistry 1 2 35–44.
IEEE N. Karakuş, “Determination of Inhibition Mechanism of Mono-Azo Naphthylamine Dyes: A Computational Corrosion Study”, Turkish Comp Theo Chem (TC&TC), c. 1, sy. 2, ss. 35–44, 2017.
ISNAD Karakuş, Nihat. “Determination of Inhibition Mechanism of Mono-Azo Naphthylamine Dyes: A Computational Corrosion Study”. Turkish Computational and Theoretical Chemistry 1/2 (Aralık 2017), 35-44.
JAMA Karakuş N. Determination of Inhibition Mechanism of Mono-Azo Naphthylamine Dyes: A Computational Corrosion Study. Turkish Comp Theo Chem (TC&TC). 2017;1:35–44.
MLA Karakuş, Nihat. “Determination of Inhibition Mechanism of Mono-Azo Naphthylamine Dyes: A Computational Corrosion Study”. Turkish Computational and Theoretical Chemistry, c. 1, sy. 2, 2017, ss. 35-44.
Vancouver Karakuş N. Determination of Inhibition Mechanism of Mono-Azo Naphthylamine Dyes: A Computational Corrosion Study. Turkish Comp Theo Chem (TC&TC). 2017;1(2):35-44.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)