Araştırma Makalesi
BibTex RIS Kaynak Göster

Manisa Akhisar Civarındaki Deprem Aktivitesi ile Gutenberg-Richter Parametrelerinin Zamansal ve Mekânsal Özelliklerinin İncelenmesi

Yıl 2020, Cilt: 2 Sayı: 2, 138 - 159, 25.12.2020
https://doi.org/10.46464/tdad.776186

Öz

Batı Anadolu Gediz Çöküntü Havzası’nın kuzey kanadında yer alan Soma-Akhisar-Gölmarmara çevresinde 2016-2020 tarihleri arasında olmuş dört deprem etkinliği değerlendirilmiştir. 3 Temmuz 2016, 12 Eylül 2016, 27 Mayıs 2017 ve 22 Ocak 2020 tarihlerindeki deprem etkinliklerinin dışmerkez dağılımlarının, fay mekanizması çözümlerinin, sismik enerji yoğunluklarının ve G-R değişkenlerinin mekânda ve zamanda değişimleri dikkat çekici örüntüler oluşturmuştur. 2017 ve 2020 deprem etkinlikleri öncesinde b-değerinde önemli düşüş örüntüleri oluşmuştur. b-değeri düşüşü 2017 aktivitesinden 148 gün önce başlarken, benzer düşüş daha büyük olan 2020 aktivitesinden 316 gün önce başlamıştır. Soma-Akhisar-Gölmarmara havzasında oluşan 2017 ve 2020 etkinliklerindeki b-değerinin önemli derecede düşüş nedeni bölgedeki fayların üzerindeki etkin gerilimin artması ve deprem aktivitesi öncesi fiziksel değişim süreci etkisi olabilir.

Destekleyen Kurum

Yok

Teşekkür

Deprem verilerini servis eden AFAD ve KRDAE'ye teşekkür ederim

Kaynakça

  • AFAD, 2016. 12.09.2016 Akhisar Manisa depremi raporu, Basına ve Kamuoyuna (Ön bilgi formu), 6 sayfa. Erişim adresi: https://deprem.afad.gov.tr/downloadDocument?id=446
  • AFAD, 2017. 27.05.2017 Saruhanlı- Manisa Depremi, Basına ve Kamuoyuna (Ön bilgi formu), 6 sayfa. Erişim adresi: https://deprem.afad.gov.tr/downloadDocument?id=1533
  • AFAD, 2019. 20 Mart 2019 Acıpayam (Denizli) depremi (Mw 5.5) değerlendirme raporu, T.C. İçişleri Bakanlığı Afet ve Acil Durum Yönetimi Başkanlığı, Deprem Araştırma Dairesi, 17 sayfa. Erişim adresi: https://deprem.afad.gov.tr/downloadDocument?id=1670
  • AFAD, 2020a. 22 Ocak 2020 Akhi̇sar (Mani̇sa) depremi (Mw 5.4) ön değerlendi̇rme raporu, T.C. İçişleri Bakanlığı Afet ve Acil Durum Yönetimi Başkanlığı, Deprem Araştırma Dairesi, 10 sayfa. Erişim adresi: https://deprem.afad.gov.tr/downloadDocument?id=1824
  • AFAD, 2020b. Erişim adresi: https://deprem.afad.gov.tr/faycozumleri
  • AFAD, 2020c. Erişim adresi: https://deprem.afad.gov.tr/ddakatalogu
  • AFAD, 2020d. erişim adresi: https://deprem.afad.gov.tr/istasyonlar
  • Aki K., 1965. Maximum likelihood estimate of b in the formula log(N)=a-bM and its confidence limits, Bull Earthq. Res. Int. Tokyo Univ. 43, 237-239.
  • Amitrano D., Grasso J. R., Senfaute G., 2005. Seismic precursory patterns before a cliff collapse and critical point phenomena, Geophysical Research Letters 32(8),1-5, doi.org/10.1029/2004GL022270
  • Bora D.K., 2016. Scaling relations of moment magnitude, local magnitude, and duration magnitude for earthquakes originated in northeast India, Earthq. Sci. 29(3),153-164.
  • Bozkurt E., 2001. Neotectonics of Turkey - a synthesis, Geodinamica Acta 14, 3-30.
  • Bozkurt E., 2003. Origin of NE-trending basins in western Turkey, Geodinamica Acta 16, 61-81.
  • Bozkurt E., Sozbilir H., 2004. Tectonic evolution of the Gediz Graben: field evidence for an episodic, two-stage extension in western Turkey, Geol. Mag. 141(1), 63-79. Demirtaş R., Tepeuğur E., Eravcı B., Yaman M., Yanık K., 2002. 1965 Salihli, 2000 Denizli ve 1999-2001 Savaştepe (Balıkesir) deprem dizileri, deprem fırtınası mı? 55. Türkiye Jeoloji Kurultayı Bildiri Özleri.
  • Demirtaş R., 2020. 22 Ocak 2020- Günümüz Akhisar-Kırkağaç (Manisa) Depremleri (Mw 5.4) Deprem Fırtınası mı? Kırkağaç-Soma Fayı, Gelenbe Fayı ve Akhisar Fayı’ndan mı kaynaklanıyor? ResearchGate.net, doi.org/10.13140/RG.2.2.23968.53767
  • Dost B., Edwards B. Bommer J.J., 2018. The relationship between M and ML - a review and application to induced seismicity in the Groningen gas field, the Netherlands, Seismol. Res. Lett. 89(3), 1062-1074.
  • Emre O., Duman T.Y., Ozalp S., Saroglu F., Olgun S., Elmaci H., Can T., 2016. Active fault database of Turkey, Bulletin of Earthquake Engineering 16, 3229-3275.
  • Emre T., Sozbilir H., 1995. Field evidence for metamorphic core complex, detachment faulting and accommodation faults in the Gediz and Büyük Menderes grabens, western Anatolia. In: Piskin O., Ergün, M. Savascin, M.Y. and Tarcan G. (eds), Proceedings of International Earth Science Colloquium on the Aegean Region 1, 73-93.
  • Enescu B., Ito K., 2003. Values of b and p: their Variations and Relation to Physical Processes for Earthquakes in Japan, Annuals of Disas. Prev. Res. Inst., Kyoto Univ. No.46 B.
  • Evans M.D., 1966. Man-made earthquakes in Denver, Geotimes 10, 11-18.
  • Eyidogan H., Jackson J., 1985. A seismological study of normal faulting in the Demirci, Alaşehir and Gediz earthquakes of 1969-70 in western Turkey: Implications for the nature and geometry of deformation in the continental crust, Geophysical Journal International 81(3), 569-607.
  • Eyidoğan H., 2020. Akhisar-Kırkağaç (Manisa) deprem fırtınasının özellikleri, Bilim ve Gelecek, Mayıs 2020. Erişim adresi: https://bilimvegelecek.com.tr/index.php/2020/05/01/akhisar-kirkagac-manisa-deprem-firtinasinin-ozellikleri
  • Fischer T., Horalek J., Michalek J., Bouskova A., 2010. The 2008 West Bohemia earthquake swarm in the light of the WEBNET network, Journal of Seismology 14(4), 665-682.
  • Goebel T.H.W., Schorlemmer D., Becker T.W., Dresen G., Sammis C.G., 2013. Acoustic emissions document stress changes over many seismic cycles in stick‐slip experiments, Geophysical Research Letters 40(10), 2049-2054.
  • Goertz‐Allmann B.P., Goertz A., Wiemer S., 2011. Stress drop variations of induced earthquakes at the Basel geothermal site, Geophysical Research Letters 38(9), L09308, 1-5.
  • Grünthal G., Wahlström R., Stromeyer D., 2009. The unified catalogue of earthquakes in central, northern, and northwestern Europe (CENEC), Journal of Seismology 13, 613-632.
  • Gulia L., Wiemer S., 2016. Short-term earthquake risk assessment considering time-dependent b-values, Geophysical Research Letters 43(3), 1100-1108.
  • Gulia L., Wiemer S., 2019. Real-time discrimination of earthquake foreshocks and aftershocks, Nature 574 (7777), 193-199.
  • Gutenberg R., Richter C.F., 1944. Frequency of earthquakes in California, Bulletin of the Seismological Society of America 34, 185-188.
  • Hainzl S., Ogata Y., 2005. Detecting fluid signals in seismicity data through statistical earthquake modeling, J. Geophys. Res. 110, B05S07.
  • Hainzl S., 2016. Rate-Dependent incompleteness of earthquake catalogs, Seismol. Res. Lett. 87, 2A, 337-344.
  • Heinicke J., Woith H., Alexandrakis C., Buske S., Telesca L., 2018. Can hydroseismicity explain recurring earthquake swarms in NW‐Bohemia?, Geophysical Journal International 212(1), 211-228.
  • Helmstetter A., Sornette D., Grasso J.R., 2003. Mainshocks are aftershocks of conditional foreshocks: How do foreshock statistical properties emerge from aftershock laws, J. Geophys. Res. Solid Earth. 108(B1).
  • Hicks S.P., Verdon J., Baptie B., Luckett R., Mildon Z.K., Gernon T., 2019. A shallow earthquake swarm close to hydrocarbon activities: discriminating between natural and induced causes for the 2018-2019, Surrey, United Kingdom, Earthquake Sequence, Seismol. Res. Lett. 90(6), 2095-2110.
  • Hill D.P., 1977. A model for earthquake swarms, J. Geophys. Res. 82(8), 1347-1352.
  • Irmak T.S., Dogan B., Yavuz E., Livaoglu H., Sertcelik F., 2020. Focal mechanisms of the January 22, 2020 Akhisar-Manisa earthquake (Mw5.5) and its aftershocks: seismotectonic implications, Turk. J. Earthq. Res. 2 (1), 27-46.
  • Ishida M., 1984. Spatial-temporal variation of seismicity and spectrum of the 1980 earthquake swarm near the Izu Peninsula, Japan, Bull. Seis.Soc.of America. 74(1), 199-221.
  • Jacobs K., McNutt S.R., 2010. Using seismic b-values to interpret seismicity rates and physical processes during the preeruptive earthquake swarm at Augustine Volcano 2005-2006, (in: The 2006 Eruption of Augustine Volcano, Alaska, Edited by Power J.A., Coombs M.L., Freymueller J.T., U.S. Geological Survey Professional Paper, 1769), 60-75.
  • Kamer Y., Hiemer S., 2015. Data- driven spatial b value estimation with applications to California seismicity: To b or not to b, J. Geophys. Res. Solid Earth 120, 5191-5214.
  • Kato A., Fukuda J.I., Nakagawa S., Obara K., 2016. Foreshock migration preceding the 2016 Mw7.0 Kumamoto earthquake, Japan, Geophysical Research Letters. 43(17), 8945-8953.
  • Ketin İ., 1969. Türkiye’nin genel tektonik durumu i̇le başlıca deprem bölgeleri arasındaki i̇lişkiler, İ.T.Ü. Maden Fakültesi.
  • KRDAE, 2014. 2-4 Ağustos 2014 Termal-Yalova deprem etkinliği hakkında (Basın Duyurusu), B.Ü. Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü, UDİM, 4 sayfa. Erişim adresi: http://udim.koeri.boun.edu.tr/Depremler/onemliler/04082014_0122TSI_Termal_YalovaDepremi_Hakkinda.pdf
  • KRDAE, 2020. Bölgesel Deprem-Tsunami İzleme ve Değerlendirme Merkezi, Basın Bültenleri. Erişim adresi: http://www.koeri.boun.edu.tr/sismo/2/deprem-bilgileri/onemli-depremler
  • Lei X., Wang Z., Su J., 2018. The December 2018 ML 5.7 and January 2019 ML 5.3 earthquakes in South Sichuan Basin induced by shale gas hydraulic fracturing, Seismol. Res. Lett. 90(3), 1099-1110.
  • Main I., Meredith P., Jones C., 1989. A reinterpretation of the precursory seismic b-value anomaly from fracture mechanics, Geophysical Journal International 96(1), 131-138.
  • MATLAB, 2018. MathWorks. Erişim adresi: https://www.mathworks.com/products/matlab.html
  • McKenzie D.P., 1978. Active tectonics of the Alpine-Himalayan belt: the Aegean Sea and surrounding regions, Geophysical Journal of the Royal Astronomical Society 55, 217-254.
  • Mogi K., 1962. Magnitude-frequency relationship for elastic shocks accompanying fractures of various materials and some related problems in earthquakes, Bull. Earthquake Res. Inst. Univ. Tokyo, 40, 831-883.
  • Mogi K., 1963. Some discussion on aftershocks, foreshocks and earthquake swarms-the fracture of a semi- infinitebody caused by an inner stress origin and its relation to the earthquake phenomena (3rd Paper), Bull. Earthquake Res. Inst. Univ. Tokyo 41, 615-658.
  • Nanjo K., Hirata N., Obara K., Kasahara K., 2012. Decade-scale decrease in b value prior to the M9-class 2011 Tohoku and 2004 Sumatra quakes, Geophys. Res. Lett. 39, L20304, doi.org/10.1029/2012GL052997
  • Nuannin P., 2006. The Potential of b-value variations as earthquake precursors for small and large events, Acta Universitatis Upsaliensis Uppsala, Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology. 183, 46 pp.
  • Popandopoulos G. A., Baskoutas I., Chatziioannou E., 2016. The spatiotemporal analysis of the minimum magnitude of completeness Mc and the Gutenberg-Richter law b-value parameter using the earthquake catalog of Greece, Izvestiya, Physics of the Solid Earth 52, 195-209.
  • Paton S., 1992. Active normal faulting, drainage patterns and sedimentation in southwestern Turkey, Journal of the Geological Society 149, 1031-1044.
  • Pino N.A., Convertito V., Madariaga R., 2019. Clock advance and magnitude limitation through fault interaction: the case of the 2016 central Italy earthquake sequence, Scientific reports, 9(1), 5005.
  • Riviere J., Lv Z., Johnson P.A., Marone C., 2018. Evolution of b-value during the seismic cycle: Insights from laboratory experiments on simulated faults, Earth and Planetary Science Letters 482, 407-413.
  • Sammonds P., Meredith P., Main I.G., 1992. Role of pore fluids in generation of seismic precursors to shear fracture, Nature 39, 228-230.
  • Scholz C.H., 1968. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes, Bulletin of the Seismological Society of America 58(1), 399-415.
  • Schorlemmer D., Wiemer S., Wyss M., 2005. Variations in earthquake-size distribution across different stress regimes, Nature 437, 539-542.
  • Sengor A.M.C., 1987. Cross-faults and differential stretching of hangingwalls in regions of low-angle normal faulting: examples from western Turkey, Geological Society, London, 575-589, doi.org/10.1144/GSL.SP.1987.028.01.38.
  • Shi Y., Bolt B.A., 1982. The standard error of the magnitude-frequency b value, Bulletin of the Seismological Society of America 72(5), 1677-1687.
  • Shibutani T., Nakao S., Nishida R., Takeuchi F., Watanabe K., Umeda Y., 2002. Swarm-like seismic activity in 1989, 1990 and 1997 preceding the 2000 Western Tottori Earthquake, Earth, Planets and Space, 54, 831-845.
  • Sykes R.L., 1970. Earthquake swarm and sea-sloor spreading, J. Geophys. Res. 75(32), 6598-6611.
  • Utsu T., 1971. Aftershocks and earthquake statistics (3)-analyses of the distribution of earthquakes in magnitude, time and space with special consideration to clustering characteristics of earthquake occurrence (1), Journal of the Faculty of Science, Hokkaido University, Ser. 7 (Geophysics). 3(5), 379-441.
  • Wang J., 1988. b values of shallow earthquakes in Taiwan, Bulletin of the Seismological Society of America 78(3), 1243-1254.
  • Wiemer S., Wyss M., 2000. Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States, and Japan, Bulletin of the Seismological Society of America 90(4), 859-869.
  • Wiemer S., 2001. A software package to analyze seismicity: ZMAP, Seismol. Res. Lett. 72(3), 373-382.
  • Wiemer S., Wyss M., 2002. Mapping spatial variability of the frequency-magnitude distribution of earthquakes, Advances in Geophysics 45, 259-302.
  • Wu Y.-M., Chen S.K., Huang T.-C., Huang H.-H., Chao W.-A., Koulakov I., 2018. Relationship between earthquake b-values and crustal stresses in a young orogenic belt, Geophysical Research Letters 45, 1832-1837.
  • Wyss M., 1973. Toward a physical understanding of the earthquake frequency distribution, Geophy. J. Royal Astronomical Society 31, 341-359.
  • Xie W., Hattori K., Ha P., 2019. Temporal variation and statistical assessment of the b-value off the Pacific coast of Tokachi, Hokkaido, Japan, Entropy 21, 249.
  • Yeken T., 2016. Spatial analysis of b-value variability in Armutlu Peninsula (NW Turkey), Open Geoscience 8, 548-555.
  • Yilmaz Y., Genc S.C., Gurer F., Bozcu M., Yilmaz K., Karacik Z., Altunkaynak S., Elmas A., 2000. When did the western Anatolian grabens begin to develop? Geological Society, London, Special Publications. 173, 353-384.
  • Yusufoglu H., 1996. Northern margin of the Gediz graben: age and evolution, west Turkey, Turk. J. of Earth Sci. 5, 11-23.

Investigation of the Temporal and Spatial Properties of Earthquake Activity and Gutenberg-Richter Parameters in the Vicinity of Manisa Akhisar

Yıl 2020, Cilt: 2 Sayı: 2, 138 - 159, 25.12.2020
https://doi.org/10.46464/tdad.776186

Öz

Four earthquake activities between 2016 and 2020 were evaluated in the vicinity of Soma-Akhisar-Gölmarmara in the northern segment of the Gediz Graben, western Turkey. Changes in epicentral distribution, fault mechanism solutions, seismic energy densities and G-R parameters of earthquake activities on July 3, 2016, September 12, 2016, May 27, 2017 and January 22, 2020, have created remarkable patterns in space and time. Prior to the 2017 and 2020 earthquake events, significant patterns of decrease in b-value occurred. The b-value decline started 148 days before 2017 activity, while a similar decline started 316 days before the larger 2020 activity. The reason for the significant decrease in the b-value in the 2017 and 2020 activities occurring in the Soma-Akhisar-Golmarmara basin may be due to the increase in the effective stress on the faults in the region and the physical change process before the intensive earthquake activity.

Kaynakça

  • AFAD, 2016. 12.09.2016 Akhisar Manisa depremi raporu, Basına ve Kamuoyuna (Ön bilgi formu), 6 sayfa. Erişim adresi: https://deprem.afad.gov.tr/downloadDocument?id=446
  • AFAD, 2017. 27.05.2017 Saruhanlı- Manisa Depremi, Basına ve Kamuoyuna (Ön bilgi formu), 6 sayfa. Erişim adresi: https://deprem.afad.gov.tr/downloadDocument?id=1533
  • AFAD, 2019. 20 Mart 2019 Acıpayam (Denizli) depremi (Mw 5.5) değerlendirme raporu, T.C. İçişleri Bakanlığı Afet ve Acil Durum Yönetimi Başkanlığı, Deprem Araştırma Dairesi, 17 sayfa. Erişim adresi: https://deprem.afad.gov.tr/downloadDocument?id=1670
  • AFAD, 2020a. 22 Ocak 2020 Akhi̇sar (Mani̇sa) depremi (Mw 5.4) ön değerlendi̇rme raporu, T.C. İçişleri Bakanlığı Afet ve Acil Durum Yönetimi Başkanlığı, Deprem Araştırma Dairesi, 10 sayfa. Erişim adresi: https://deprem.afad.gov.tr/downloadDocument?id=1824
  • AFAD, 2020b. Erişim adresi: https://deprem.afad.gov.tr/faycozumleri
  • AFAD, 2020c. Erişim adresi: https://deprem.afad.gov.tr/ddakatalogu
  • AFAD, 2020d. erişim adresi: https://deprem.afad.gov.tr/istasyonlar
  • Aki K., 1965. Maximum likelihood estimate of b in the formula log(N)=a-bM and its confidence limits, Bull Earthq. Res. Int. Tokyo Univ. 43, 237-239.
  • Amitrano D., Grasso J. R., Senfaute G., 2005. Seismic precursory patterns before a cliff collapse and critical point phenomena, Geophysical Research Letters 32(8),1-5, doi.org/10.1029/2004GL022270
  • Bora D.K., 2016. Scaling relations of moment magnitude, local magnitude, and duration magnitude for earthquakes originated in northeast India, Earthq. Sci. 29(3),153-164.
  • Bozkurt E., 2001. Neotectonics of Turkey - a synthesis, Geodinamica Acta 14, 3-30.
  • Bozkurt E., 2003. Origin of NE-trending basins in western Turkey, Geodinamica Acta 16, 61-81.
  • Bozkurt E., Sozbilir H., 2004. Tectonic evolution of the Gediz Graben: field evidence for an episodic, two-stage extension in western Turkey, Geol. Mag. 141(1), 63-79. Demirtaş R., Tepeuğur E., Eravcı B., Yaman M., Yanık K., 2002. 1965 Salihli, 2000 Denizli ve 1999-2001 Savaştepe (Balıkesir) deprem dizileri, deprem fırtınası mı? 55. Türkiye Jeoloji Kurultayı Bildiri Özleri.
  • Demirtaş R., 2020. 22 Ocak 2020- Günümüz Akhisar-Kırkağaç (Manisa) Depremleri (Mw 5.4) Deprem Fırtınası mı? Kırkağaç-Soma Fayı, Gelenbe Fayı ve Akhisar Fayı’ndan mı kaynaklanıyor? ResearchGate.net, doi.org/10.13140/RG.2.2.23968.53767
  • Dost B., Edwards B. Bommer J.J., 2018. The relationship between M and ML - a review and application to induced seismicity in the Groningen gas field, the Netherlands, Seismol. Res. Lett. 89(3), 1062-1074.
  • Emre O., Duman T.Y., Ozalp S., Saroglu F., Olgun S., Elmaci H., Can T., 2016. Active fault database of Turkey, Bulletin of Earthquake Engineering 16, 3229-3275.
  • Emre T., Sozbilir H., 1995. Field evidence for metamorphic core complex, detachment faulting and accommodation faults in the Gediz and Büyük Menderes grabens, western Anatolia. In: Piskin O., Ergün, M. Savascin, M.Y. and Tarcan G. (eds), Proceedings of International Earth Science Colloquium on the Aegean Region 1, 73-93.
  • Enescu B., Ito K., 2003. Values of b and p: their Variations and Relation to Physical Processes for Earthquakes in Japan, Annuals of Disas. Prev. Res. Inst., Kyoto Univ. No.46 B.
  • Evans M.D., 1966. Man-made earthquakes in Denver, Geotimes 10, 11-18.
  • Eyidogan H., Jackson J., 1985. A seismological study of normal faulting in the Demirci, Alaşehir and Gediz earthquakes of 1969-70 in western Turkey: Implications for the nature and geometry of deformation in the continental crust, Geophysical Journal International 81(3), 569-607.
  • Eyidoğan H., 2020. Akhisar-Kırkağaç (Manisa) deprem fırtınasının özellikleri, Bilim ve Gelecek, Mayıs 2020. Erişim adresi: https://bilimvegelecek.com.tr/index.php/2020/05/01/akhisar-kirkagac-manisa-deprem-firtinasinin-ozellikleri
  • Fischer T., Horalek J., Michalek J., Bouskova A., 2010. The 2008 West Bohemia earthquake swarm in the light of the WEBNET network, Journal of Seismology 14(4), 665-682.
  • Goebel T.H.W., Schorlemmer D., Becker T.W., Dresen G., Sammis C.G., 2013. Acoustic emissions document stress changes over many seismic cycles in stick‐slip experiments, Geophysical Research Letters 40(10), 2049-2054.
  • Goertz‐Allmann B.P., Goertz A., Wiemer S., 2011. Stress drop variations of induced earthquakes at the Basel geothermal site, Geophysical Research Letters 38(9), L09308, 1-5.
  • Grünthal G., Wahlström R., Stromeyer D., 2009. The unified catalogue of earthquakes in central, northern, and northwestern Europe (CENEC), Journal of Seismology 13, 613-632.
  • Gulia L., Wiemer S., 2016. Short-term earthquake risk assessment considering time-dependent b-values, Geophysical Research Letters 43(3), 1100-1108.
  • Gulia L., Wiemer S., 2019. Real-time discrimination of earthquake foreshocks and aftershocks, Nature 574 (7777), 193-199.
  • Gutenberg R., Richter C.F., 1944. Frequency of earthquakes in California, Bulletin of the Seismological Society of America 34, 185-188.
  • Hainzl S., Ogata Y., 2005. Detecting fluid signals in seismicity data through statistical earthquake modeling, J. Geophys. Res. 110, B05S07.
  • Hainzl S., 2016. Rate-Dependent incompleteness of earthquake catalogs, Seismol. Res. Lett. 87, 2A, 337-344.
  • Heinicke J., Woith H., Alexandrakis C., Buske S., Telesca L., 2018. Can hydroseismicity explain recurring earthquake swarms in NW‐Bohemia?, Geophysical Journal International 212(1), 211-228.
  • Helmstetter A., Sornette D., Grasso J.R., 2003. Mainshocks are aftershocks of conditional foreshocks: How do foreshock statistical properties emerge from aftershock laws, J. Geophys. Res. Solid Earth. 108(B1).
  • Hicks S.P., Verdon J., Baptie B., Luckett R., Mildon Z.K., Gernon T., 2019. A shallow earthquake swarm close to hydrocarbon activities: discriminating between natural and induced causes for the 2018-2019, Surrey, United Kingdom, Earthquake Sequence, Seismol. Res. Lett. 90(6), 2095-2110.
  • Hill D.P., 1977. A model for earthquake swarms, J. Geophys. Res. 82(8), 1347-1352.
  • Irmak T.S., Dogan B., Yavuz E., Livaoglu H., Sertcelik F., 2020. Focal mechanisms of the January 22, 2020 Akhisar-Manisa earthquake (Mw5.5) and its aftershocks: seismotectonic implications, Turk. J. Earthq. Res. 2 (1), 27-46.
  • Ishida M., 1984. Spatial-temporal variation of seismicity and spectrum of the 1980 earthquake swarm near the Izu Peninsula, Japan, Bull. Seis.Soc.of America. 74(1), 199-221.
  • Jacobs K., McNutt S.R., 2010. Using seismic b-values to interpret seismicity rates and physical processes during the preeruptive earthquake swarm at Augustine Volcano 2005-2006, (in: The 2006 Eruption of Augustine Volcano, Alaska, Edited by Power J.A., Coombs M.L., Freymueller J.T., U.S. Geological Survey Professional Paper, 1769), 60-75.
  • Kamer Y., Hiemer S., 2015. Data- driven spatial b value estimation with applications to California seismicity: To b or not to b, J. Geophys. Res. Solid Earth 120, 5191-5214.
  • Kato A., Fukuda J.I., Nakagawa S., Obara K., 2016. Foreshock migration preceding the 2016 Mw7.0 Kumamoto earthquake, Japan, Geophysical Research Letters. 43(17), 8945-8953.
  • Ketin İ., 1969. Türkiye’nin genel tektonik durumu i̇le başlıca deprem bölgeleri arasındaki i̇lişkiler, İ.T.Ü. Maden Fakültesi.
  • KRDAE, 2014. 2-4 Ağustos 2014 Termal-Yalova deprem etkinliği hakkında (Basın Duyurusu), B.Ü. Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü, UDİM, 4 sayfa. Erişim adresi: http://udim.koeri.boun.edu.tr/Depremler/onemliler/04082014_0122TSI_Termal_YalovaDepremi_Hakkinda.pdf
  • KRDAE, 2020. Bölgesel Deprem-Tsunami İzleme ve Değerlendirme Merkezi, Basın Bültenleri. Erişim adresi: http://www.koeri.boun.edu.tr/sismo/2/deprem-bilgileri/onemli-depremler
  • Lei X., Wang Z., Su J., 2018. The December 2018 ML 5.7 and January 2019 ML 5.3 earthquakes in South Sichuan Basin induced by shale gas hydraulic fracturing, Seismol. Res. Lett. 90(3), 1099-1110.
  • Main I., Meredith P., Jones C., 1989. A reinterpretation of the precursory seismic b-value anomaly from fracture mechanics, Geophysical Journal International 96(1), 131-138.
  • MATLAB, 2018. MathWorks. Erişim adresi: https://www.mathworks.com/products/matlab.html
  • McKenzie D.P., 1978. Active tectonics of the Alpine-Himalayan belt: the Aegean Sea and surrounding regions, Geophysical Journal of the Royal Astronomical Society 55, 217-254.
  • Mogi K., 1962. Magnitude-frequency relationship for elastic shocks accompanying fractures of various materials and some related problems in earthquakes, Bull. Earthquake Res. Inst. Univ. Tokyo, 40, 831-883.
  • Mogi K., 1963. Some discussion on aftershocks, foreshocks and earthquake swarms-the fracture of a semi- infinitebody caused by an inner stress origin and its relation to the earthquake phenomena (3rd Paper), Bull. Earthquake Res. Inst. Univ. Tokyo 41, 615-658.
  • Nanjo K., Hirata N., Obara K., Kasahara K., 2012. Decade-scale decrease in b value prior to the M9-class 2011 Tohoku and 2004 Sumatra quakes, Geophys. Res. Lett. 39, L20304, doi.org/10.1029/2012GL052997
  • Nuannin P., 2006. The Potential of b-value variations as earthquake precursors for small and large events, Acta Universitatis Upsaliensis Uppsala, Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology. 183, 46 pp.
  • Popandopoulos G. A., Baskoutas I., Chatziioannou E., 2016. The spatiotemporal analysis of the minimum magnitude of completeness Mc and the Gutenberg-Richter law b-value parameter using the earthquake catalog of Greece, Izvestiya, Physics of the Solid Earth 52, 195-209.
  • Paton S., 1992. Active normal faulting, drainage patterns and sedimentation in southwestern Turkey, Journal of the Geological Society 149, 1031-1044.
  • Pino N.A., Convertito V., Madariaga R., 2019. Clock advance and magnitude limitation through fault interaction: the case of the 2016 central Italy earthquake sequence, Scientific reports, 9(1), 5005.
  • Riviere J., Lv Z., Johnson P.A., Marone C., 2018. Evolution of b-value during the seismic cycle: Insights from laboratory experiments on simulated faults, Earth and Planetary Science Letters 482, 407-413.
  • Sammonds P., Meredith P., Main I.G., 1992. Role of pore fluids in generation of seismic precursors to shear fracture, Nature 39, 228-230.
  • Scholz C.H., 1968. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes, Bulletin of the Seismological Society of America 58(1), 399-415.
  • Schorlemmer D., Wiemer S., Wyss M., 2005. Variations in earthquake-size distribution across different stress regimes, Nature 437, 539-542.
  • Sengor A.M.C., 1987. Cross-faults and differential stretching of hangingwalls in regions of low-angle normal faulting: examples from western Turkey, Geological Society, London, 575-589, doi.org/10.1144/GSL.SP.1987.028.01.38.
  • Shi Y., Bolt B.A., 1982. The standard error of the magnitude-frequency b value, Bulletin of the Seismological Society of America 72(5), 1677-1687.
  • Shibutani T., Nakao S., Nishida R., Takeuchi F., Watanabe K., Umeda Y., 2002. Swarm-like seismic activity in 1989, 1990 and 1997 preceding the 2000 Western Tottori Earthquake, Earth, Planets and Space, 54, 831-845.
  • Sykes R.L., 1970. Earthquake swarm and sea-sloor spreading, J. Geophys. Res. 75(32), 6598-6611.
  • Utsu T., 1971. Aftershocks and earthquake statistics (3)-analyses of the distribution of earthquakes in magnitude, time and space with special consideration to clustering characteristics of earthquake occurrence (1), Journal of the Faculty of Science, Hokkaido University, Ser. 7 (Geophysics). 3(5), 379-441.
  • Wang J., 1988. b values of shallow earthquakes in Taiwan, Bulletin of the Seismological Society of America 78(3), 1243-1254.
  • Wiemer S., Wyss M., 2000. Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States, and Japan, Bulletin of the Seismological Society of America 90(4), 859-869.
  • Wiemer S., 2001. A software package to analyze seismicity: ZMAP, Seismol. Res. Lett. 72(3), 373-382.
  • Wiemer S., Wyss M., 2002. Mapping spatial variability of the frequency-magnitude distribution of earthquakes, Advances in Geophysics 45, 259-302.
  • Wu Y.-M., Chen S.K., Huang T.-C., Huang H.-H., Chao W.-A., Koulakov I., 2018. Relationship between earthquake b-values and crustal stresses in a young orogenic belt, Geophysical Research Letters 45, 1832-1837.
  • Wyss M., 1973. Toward a physical understanding of the earthquake frequency distribution, Geophy. J. Royal Astronomical Society 31, 341-359.
  • Xie W., Hattori K., Ha P., 2019. Temporal variation and statistical assessment of the b-value off the Pacific coast of Tokachi, Hokkaido, Japan, Entropy 21, 249.
  • Yeken T., 2016. Spatial analysis of b-value variability in Armutlu Peninsula (NW Turkey), Open Geoscience 8, 548-555.
  • Yilmaz Y., Genc S.C., Gurer F., Bozcu M., Yilmaz K., Karacik Z., Altunkaynak S., Elmas A., 2000. When did the western Anatolian grabens begin to develop? Geological Society, London, Special Publications. 173, 353-384.
  • Yusufoglu H., 1996. Northern margin of the Gediz graben: age and evolution, west Turkey, Turk. J. of Earth Sci. 5, 11-23.
Toplam 72 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Jeoloji (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Haluk Eyidoğan 0000-0003-4218-5106

Yayımlanma Tarihi 25 Aralık 2020
Gönderilme Tarihi 31 Temmuz 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 2 Sayı: 2

Kaynak Göster

APA Eyidoğan, H. (2020). Manisa Akhisar Civarındaki Deprem Aktivitesi ile Gutenberg-Richter Parametrelerinin Zamansal ve Mekânsal Özelliklerinin İncelenmesi. Türk Deprem Araştırma Dergisi, 2(2), 138-159. https://doi.org/10.46464/tdad.776186
AMA Eyidoğan H. Manisa Akhisar Civarındaki Deprem Aktivitesi ile Gutenberg-Richter Parametrelerinin Zamansal ve Mekânsal Özelliklerinin İncelenmesi. TDAD. Aralık 2020;2(2):138-159. doi:10.46464/tdad.776186
Chicago Eyidoğan, Haluk. “Manisa Akhisar Civarındaki Deprem Aktivitesi Ile Gutenberg-Richter Parametrelerinin Zamansal Ve Mekânsal Özelliklerinin İncelenmesi”. Türk Deprem Araştırma Dergisi 2, sy. 2 (Aralık 2020): 138-59. https://doi.org/10.46464/tdad.776186.
EndNote Eyidoğan H (01 Aralık 2020) Manisa Akhisar Civarındaki Deprem Aktivitesi ile Gutenberg-Richter Parametrelerinin Zamansal ve Mekânsal Özelliklerinin İncelenmesi. Türk Deprem Araştırma Dergisi 2 2 138–159.
IEEE H. Eyidoğan, “Manisa Akhisar Civarındaki Deprem Aktivitesi ile Gutenberg-Richter Parametrelerinin Zamansal ve Mekânsal Özelliklerinin İncelenmesi”, TDAD, c. 2, sy. 2, ss. 138–159, 2020, doi: 10.46464/tdad.776186.
ISNAD Eyidoğan, Haluk. “Manisa Akhisar Civarındaki Deprem Aktivitesi Ile Gutenberg-Richter Parametrelerinin Zamansal Ve Mekânsal Özelliklerinin İncelenmesi”. Türk Deprem Araştırma Dergisi 2/2 (Aralık 2020), 138-159. https://doi.org/10.46464/tdad.776186.
JAMA Eyidoğan H. Manisa Akhisar Civarındaki Deprem Aktivitesi ile Gutenberg-Richter Parametrelerinin Zamansal ve Mekânsal Özelliklerinin İncelenmesi. TDAD. 2020;2:138–159.
MLA Eyidoğan, Haluk. “Manisa Akhisar Civarındaki Deprem Aktivitesi Ile Gutenberg-Richter Parametrelerinin Zamansal Ve Mekânsal Özelliklerinin İncelenmesi”. Türk Deprem Araştırma Dergisi, c. 2, sy. 2, 2020, ss. 138-59, doi:10.46464/tdad.776186.
Vancouver Eyidoğan H. Manisa Akhisar Civarındaki Deprem Aktivitesi ile Gutenberg-Richter Parametrelerinin Zamansal ve Mekânsal Özelliklerinin İncelenmesi. TDAD. 2020;2(2):138-59.

AÇIK ERİŞİM ve LİSANS


Bu derginin içeriği Creative Commons Attribution 4.0 International Non-Commercial License'a tabidir.




Flag Counter