Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 8 Sayı: 2, 1 - 5, 31.12.2019

Öz

Destekleyen Kurum

TÜBİTAK

Proje Numarası

115E664

Teşekkür

This work was partially supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under Grant 115E664 and Grant BIDEB 2218. The author would like to thank the Bilkent University.

Kaynakça

  • [1] Orak I, Ürel M, Bakan G, Dana A. Memristive behavior in a junctionless flash memory cell. Applied Physics Letters 2015;233506:2–7. doi:10.1063/1.4922624.
  • [2] El-atab N, Nayfeh A. MOS Memory with Double-Layer High-Tunnel Oxide Al2O3/HfO2 and ZnO Charge Trapping Layer. IEEE International Conference on Nanotechnology 2015:766–8.
  • [3] Lee C, Kim I, Shin H, Kim S. Nonvolatile memory properties of Pt nanocomposite multilayers via electrostatic layer-by-layer assembly. Nanotechnology 2010;7:185704. doi:10.1088/0957-4484/21/18/185704.
  • [4] Rudolph D, Olibet S, Hoornstra J, Weeber A, Cabrera E, Carr A, et al. Replacement of silver in silicon solar cell metallization pastes containing a highly reactive glass frit: Is it possible? Energy Procedia 2013;43:44–53. doi:10.1016/j.egypro.2013.11.087.
  • [5] Orak İ, Eren H, Bıyıklı N, Dâna A. Utilizing embedded ultra-small Pt nanoparticles as charge trapping layer in flashristor memory cells. Applied Surface Science 2019;467–468:715–22. doi:10.1016/j.apsusc.2018.10.213.
  • [6] Yun HJ, Kim SJ, Hwang JH, Shim YS, Jung SG, Park YW, et al. Silver nanowire-IZO-conducting polymer hybrids for flexible and transparent conductive electrodes for organic light-emitting diodes. Scientific Reports 2016;6:1–12. doi:10.1038/srep34150.
  • [7] Gozeh BA, Karabulut A, Yildiz A, Yakuphanoglu F. Solar light responsive ZnO nanoparticles adjusted using Cd and La Co-dopant photodetector. Journal of Alloys and Compounds 2018;732:16–24. doi:10.1016/j.jallcom.2017.10.167.
  • [8] El-Atab N, Turgut BB, Okyay AK, Nayfeh M, Nayfeh A. Enhanced non-volatile memory characteristics with quattro-layer graphene nanoplatelets vs. 2.85-nm Si nanoparticles with asymmetric Al2O3/HfO2 tunnel oxide. Nanoscale Research Letters 2015;10:248. doi:10.1186/s11671-015-0957-5.
  • [9] Ejderha K, Turut A. The electrical characterizations and illumination response of Co / N -type GaP junction device 2015;15:1054–61. doi:10.1016/j.cap.2015.05.014.
  • [10] Yakuphanoglu F, Caglar Y, Caglar M, Ilican S. Materials Science in Semiconductor Processing ZnO / p-Si heterojunction photodiode by sol – gel deposition of nanostructure n-ZnO film on p-Si substrate. Materials Science in Semiconductor Processing 2010;13:137–40. doi:10.1016/j.mssp.2010.05.005.
  • [11] Qiu XY, Zhou GD, Li J, Chen Y, Wang XH, Dai JY. Memory characteristics and tunneling mechanism of Ag nanocrystal embedded HfAlOxfilms on Si83Ge17/Si substrate. Thin Solid Films 2014;562:674–9. doi:10.1016/j.tsf.2014.03.086.
  • [12] Oruç FB, Cimen F, Rizk A, Ghaffari M, Nayfeh A, Okyay AK, et al. Thin-Film ZnO Charge-Trapping Memory Cell Grown in a Single ALD Step. IEEE Electron Device Letters 2012;33:1714–6.
  • [13] El-atab N, Nayfeh A. MOS Memory with Ultrathin Al 2 O 3 -TiO 2 Nanolaminates Tunnel Oxide and 2 . 85-nm Si- Nanoparticles Charge Trapping Layer. IEEE-Nano 2015 - 15th International Conference On Nanotechnology 2015:663–5.
  • [14] Karabulut A, Orak İ, Türüt A. Electrical characteristics of Au/Ti/HfO2/n-GaAs metal-insulator-semiconductor structures with high-k interfacial layer. International Journal of Chemistry and Technology 2018;2:116–22. doi:10.32571/ijct.456902.
  • [15] Ovanesyan RA, Filatova EA, Elliott SD, Hausmann DM, Smith DC, Ovanesyan RA, et al. Current status and future outlook Atomic layer deposition of silicon-based dielectrics for semiconductor manufacturing : Current status and future outlook 2019;060904. doi:10.1116/1.5113631.
  • [16] Novak S, Lee B, Yang X, Misra V. Platinum Nanoparticles Grown by Atomic Layer Deposition for Charge Storage Memory Applications. Journal of The Electrochemical Society 2010;157:H589. doi:10.1149/1.3365031.
  • [17] George SM. Atomic layer deposition: An overview. Chemical Reviews 2010;110:111–31. doi:10.1021/cr900056b.
  • [18] Horowitz BG. Organic Field-Effect Transistors 1998:365–77.
  • [19] Sohn JI, Choi SS, Morris SM, Bendall JS, Coles HJ, Hong W, et al. Novel Nonvolatile Memory with Multibit Storage Based on a ZnO Nanowire Transistor. Nanoletters 2010:4316–20. doi:10.1021/nl1013713.
  • [20] Hu C, Dong D, Yang X, Qiao K, Yang D, Deng H, et al. Synergistic Effect of Hybrid PbS Quantum Dots/2D-WSe2 Toward High Performance and Broadband Phototransistors. Advanced Functional Materials 2017;27. doi:10.1002/adfm.201603605.

The Thin Film Phototransistor Cell with Silver Interfacial Layer

Yıl 2019, Cilt: 8 Sayı: 2, 1 - 5, 31.12.2019

Öz

In the present study,
the silver (Ag) metal particle was used between two insulating layers to fabricated
zinc-oxide (ZnO) thin film transistor. The Ag metal was evaporated with thermal
systems. The dielectric materials such as Al2O3 and HfO2
were deposited atomic layer deposition (ALD) technique. In order to beter
understand the device operation and Ag layer on charge trapping layer, the some
electrical characteristics such as Ion/Ioff ratio,
threshold voltage (Vth) were calculated with some different current-voltage (I-V)
measurements. These values are found to be 1.1x103 and 2.1 V,
respectively. The IDS-VDS measurements were repeated 20
times to investigate the memory effect of Ag material at the interface layer. This
measurement shown that the hysterisis of memory window did not decreased. In addition
these measurements, the transistor's response was measured to light by taking IDS-VDS
measurements in the dark and under light. This device has been found to
be photosensitive. These results shown that the ZnO thin film transistor can be
used flash memory technology and photovoltaic device applications.

Proje Numarası

115E664

Kaynakça

  • [1] Orak I, Ürel M, Bakan G, Dana A. Memristive behavior in a junctionless flash memory cell. Applied Physics Letters 2015;233506:2–7. doi:10.1063/1.4922624.
  • [2] El-atab N, Nayfeh A. MOS Memory with Double-Layer High-Tunnel Oxide Al2O3/HfO2 and ZnO Charge Trapping Layer. IEEE International Conference on Nanotechnology 2015:766–8.
  • [3] Lee C, Kim I, Shin H, Kim S. Nonvolatile memory properties of Pt nanocomposite multilayers via electrostatic layer-by-layer assembly. Nanotechnology 2010;7:185704. doi:10.1088/0957-4484/21/18/185704.
  • [4] Rudolph D, Olibet S, Hoornstra J, Weeber A, Cabrera E, Carr A, et al. Replacement of silver in silicon solar cell metallization pastes containing a highly reactive glass frit: Is it possible? Energy Procedia 2013;43:44–53. doi:10.1016/j.egypro.2013.11.087.
  • [5] Orak İ, Eren H, Bıyıklı N, Dâna A. Utilizing embedded ultra-small Pt nanoparticles as charge trapping layer in flashristor memory cells. Applied Surface Science 2019;467–468:715–22. doi:10.1016/j.apsusc.2018.10.213.
  • [6] Yun HJ, Kim SJ, Hwang JH, Shim YS, Jung SG, Park YW, et al. Silver nanowire-IZO-conducting polymer hybrids for flexible and transparent conductive electrodes for organic light-emitting diodes. Scientific Reports 2016;6:1–12. doi:10.1038/srep34150.
  • [7] Gozeh BA, Karabulut A, Yildiz A, Yakuphanoglu F. Solar light responsive ZnO nanoparticles adjusted using Cd and La Co-dopant photodetector. Journal of Alloys and Compounds 2018;732:16–24. doi:10.1016/j.jallcom.2017.10.167.
  • [8] El-Atab N, Turgut BB, Okyay AK, Nayfeh M, Nayfeh A. Enhanced non-volatile memory characteristics with quattro-layer graphene nanoplatelets vs. 2.85-nm Si nanoparticles with asymmetric Al2O3/HfO2 tunnel oxide. Nanoscale Research Letters 2015;10:248. doi:10.1186/s11671-015-0957-5.
  • [9] Ejderha K, Turut A. The electrical characterizations and illumination response of Co / N -type GaP junction device 2015;15:1054–61. doi:10.1016/j.cap.2015.05.014.
  • [10] Yakuphanoglu F, Caglar Y, Caglar M, Ilican S. Materials Science in Semiconductor Processing ZnO / p-Si heterojunction photodiode by sol – gel deposition of nanostructure n-ZnO film on p-Si substrate. Materials Science in Semiconductor Processing 2010;13:137–40. doi:10.1016/j.mssp.2010.05.005.
  • [11] Qiu XY, Zhou GD, Li J, Chen Y, Wang XH, Dai JY. Memory characteristics and tunneling mechanism of Ag nanocrystal embedded HfAlOxfilms on Si83Ge17/Si substrate. Thin Solid Films 2014;562:674–9. doi:10.1016/j.tsf.2014.03.086.
  • [12] Oruç FB, Cimen F, Rizk A, Ghaffari M, Nayfeh A, Okyay AK, et al. Thin-Film ZnO Charge-Trapping Memory Cell Grown in a Single ALD Step. IEEE Electron Device Letters 2012;33:1714–6.
  • [13] El-atab N, Nayfeh A. MOS Memory with Ultrathin Al 2 O 3 -TiO 2 Nanolaminates Tunnel Oxide and 2 . 85-nm Si- Nanoparticles Charge Trapping Layer. IEEE-Nano 2015 - 15th International Conference On Nanotechnology 2015:663–5.
  • [14] Karabulut A, Orak İ, Türüt A. Electrical characteristics of Au/Ti/HfO2/n-GaAs metal-insulator-semiconductor structures with high-k interfacial layer. International Journal of Chemistry and Technology 2018;2:116–22. doi:10.32571/ijct.456902.
  • [15] Ovanesyan RA, Filatova EA, Elliott SD, Hausmann DM, Smith DC, Ovanesyan RA, et al. Current status and future outlook Atomic layer deposition of silicon-based dielectrics for semiconductor manufacturing : Current status and future outlook 2019;060904. doi:10.1116/1.5113631.
  • [16] Novak S, Lee B, Yang X, Misra V. Platinum Nanoparticles Grown by Atomic Layer Deposition for Charge Storage Memory Applications. Journal of The Electrochemical Society 2010;157:H589. doi:10.1149/1.3365031.
  • [17] George SM. Atomic layer deposition: An overview. Chemical Reviews 2010;110:111–31. doi:10.1021/cr900056b.
  • [18] Horowitz BG. Organic Field-Effect Transistors 1998:365–77.
  • [19] Sohn JI, Choi SS, Morris SM, Bendall JS, Coles HJ, Hong W, et al. Novel Nonvolatile Memory with Multibit Storage Based on a ZnO Nanowire Transistor. Nanoletters 2010:4316–20. doi:10.1021/nl1013713.
  • [20] Hu C, Dong D, Yang X, Qiao K, Yang D, Deng H, et al. Synergistic Effect of Hybrid PbS Quantum Dots/2D-WSe2 Toward High Performance and Broadband Phototransistors. Advanced Functional Materials 2017;27. doi:10.1002/adfm.201603605.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

İkram Orak 0000-0003-2318-9718

Proje Numarası 115E664
Yayımlanma Tarihi 31 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 8 Sayı: 2

Kaynak Göster

APA Orak, İ. (2019). The Thin Film Phototransistor Cell with Silver Interfacial Layer. Türk Doğa Ve Fen Dergisi, 8(2), 1-5.
AMA Orak İ. The Thin Film Phototransistor Cell with Silver Interfacial Layer. TDFD. Aralık 2019;8(2):1-5.
Chicago Orak, İkram. “The Thin Film Phototransistor Cell With Silver Interfacial Layer”. Türk Doğa Ve Fen Dergisi 8, sy. 2 (Aralık 2019): 1-5.
EndNote Orak İ (01 Aralık 2019) The Thin Film Phototransistor Cell with Silver Interfacial Layer. Türk Doğa ve Fen Dergisi 8 2 1–5.
IEEE İ. Orak, “The Thin Film Phototransistor Cell with Silver Interfacial Layer”, TDFD, c. 8, sy. 2, ss. 1–5, 2019.
ISNAD Orak, İkram. “The Thin Film Phototransistor Cell With Silver Interfacial Layer”. Türk Doğa ve Fen Dergisi 8/2 (Aralık 2019), 1-5.
JAMA Orak İ. The Thin Film Phototransistor Cell with Silver Interfacial Layer. TDFD. 2019;8:1–5.
MLA Orak, İkram. “The Thin Film Phototransistor Cell With Silver Interfacial Layer”. Türk Doğa Ve Fen Dergisi, c. 8, sy. 2, 2019, ss. 1-5.
Vancouver Orak İ. The Thin Film Phototransistor Cell with Silver Interfacial Layer. TDFD. 2019;8(2):1-5.