Ülkelerin ekonomilerine, milli varlıklarına zarar verip insanların yaşamlarına sebep olan trafik kazaları, ülkelerin en büyük sorunlarından biridir. Dolayısıyla, kazaların meydana gelmesine katkıda bulunan faktörlerin araştırılması ve doğru bir kaza şiddeti tahmin modelinin geliştirilmesi kritik öneme sahiptir. Bu çalışmada, 2011-2021 yılları arasında Teksas'ın Austin, Dallas ve San Antonio şehirlerinden toplanan trafik kazası verileri kullanılarak, kazalara sebep olan faktörler incelenip, Derin Öğrenme, Lojistik Regresyon, XGBoost, Random Forest, KNN ve SVM gibi 6 farklı makine öğrenme tekniğinin kaza şiddet-tahmin performans sonuçları karşılaştırılırdı. Elde edilen bulgular, Lojistik Regresyon algoritmasının kaza şiddetini sınıflandırmada %88 doğrulukla diğerleri arasında en iyi performansı gösterdiğini göstermektedir.
Machine Learning Deep Learning Traffic Accident Data Mining Crash Severity
Birincil Dil | İngilizce |
---|---|
Konular | Mühendislik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 29 Eylül 2022 |
Yayımlandığı Sayı | Yıl 2022 Cilt: 11 Sayı: 3 |
Bu eser Creative Commons Atıf-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.