Araştırma Makalesi
BibTex RIS Kaynak Göster

Demir Tabanlı Bazı Metalik Camlar İçin Gama Radyasyonu Zırhlama Karakteristiklerinin Belirlenmesi

Yıl 2023, Cilt: 12 Sayı: 1, 53 - 60, 27.03.2023
https://doi.org/10.46810/tdfd.1235560

Öz

Sunulan bu çalışmada, Fe81B13.5Si3.5C2, Fe79B16Si5, Fe78B13Si9 ve Fe40Ni38B18Mo4 içeriklerine sahip ve FeBSiC, FeBSi1, FeBSi2 ve FeNiBMo olarak kodlanan metalik camların gama radyasyonu zırhlama karakteristikleri incelenmiştir. İnceleme yapmak için WinXCOM programı ve GEANT4 ve FLUKA simülasyon kodları yardımıyla 0.060 ila 2.614 MeV foton enerjileri aralığında metalik camların kütle azaltma katsayıları hesaplanmıştır. Hesaplanan kütle azaltma katsayıları yardımıyla lineer azaltma katsayıları, yarı ve onda-bir kalınlık değerleri, ortalama serbest yol, etkin atom numarası ve elektron yoğunluğu parametreleri hesaplanmıştır. Hesaplanan gama radyasyonu zırhlama parametrelerinin foton enerjisi ile değişimleri irdelenmiştir. Kütle ve lineer azaltma katsayıları, etkin atom numarası ve elektron yoğunluğu parametrelerinin artan foton enerjisi azaldığı gözlemlenirken, yarı ve onda-bir kalınlık değerleri ve ortalama serbest yol parametrelerinin artan foton enerjisi ile arttığı gözlemlenmiştir. Düşük foton enerjisi bölgesinde metalik camların daha iyi gama zırhlama kabiliyetlerine sahip olduğu ve FeNiBMo olarak kodlanan metalik camın incelenen diğer metalik camlara göre daha iyi gama radyasyonu zırhlama kapasitesinin olduğu gözlemlenmiştir.

Kaynakça

  • Halimah MK, Azuraida A, Ishak M, Hasnimulyati L. Influence of bismuth oxide on gamma radiation shielding properties of boro-tellurite glass. J Non-cryst Solids. 2019; 512: 140-7.
  • Al-Buriahi MS, Sriwunkum C, Arslan H, Tonguc BT, Bourham MA. Investigation of barium borate glasses for radiation shielding applications. Appl Phys A-Mater. 2020; 126(1): 1-9.
  • El-Sharkawy RM, Shaaban KS, Elsaman R, Allam EA, El-Taher A, Mahmoud ME. Investigation of mechanical and radiation shielding characteristics of novel glass systems with the composition xNiO-20ZnO-60B2O3-(20-x) CdO based on nanometal oxides. J Non-cryst Solids. 2020; 528: 119754.
  • Kaur T, Vermani YK, Al-Buriahi MS, Alzahrani JS, Singh T. Comprehensive investigations on radiation shielding efficacy of bulk and nano Pb-Sn-Cd-Zn alloys. Phys Scripta. 2022; 97(5): 055009.
  • Turhan MF, Akman F, Taşer A, Dilsiz K, Oğul H, Kacal MR, et al. Gamma radiation shielding performance of CuxAg (1-x)-alloys: Experimental, theoretical and simulation results. Prog Nucl Energ. 2022; 143: 104036.
  • Alzahrani JS, Alrowaili ZA, Eke C, Mahmoud ZM, Mutuwong C, Al-Buriahi MS. Nuclear shielding properties of Ni-, Fe-, Pb-, and W-based alloys. Radiat Phys Chem. 2022; 195: 110090.
  • Zeyad AM, Hakeem IY, Amin M, Tayeh BA, Agwa IS. Effect of aggregate and fibre types on ultra-high-performance concrete designed for radiation shielding. J Build Eng. 2022; 58: 104960.
  • Kharita MH, Takeyeddin M, Alnassar M, Yousef S. Development of special radiation shielding concretes using natural local materials and evaluation of their shielding characteristics. Prog Nucl Energ. 2008; 50(1): 33-6.
  • Makarious AS, Bashter II, Abdo AES, Azim MSA, Kansouh WA. On the utilization of heavy concrete for radiation shielding. Ann Nucl Energy. 1996; 23(3): 195-206.
  • Cherkashina NI, Pavlenko VI, Noskov AV. Radiation shielding properties of polyimide composite materials. Radiat Phys Chem. 2019; 159: 111-7.
  • Saleh HM, Bondouk II, Salama E, Esawii HA. Consistency and shielding efficiency of cement-bitumen composite for use as gamma-radiation shielding material. Prog Nucl Energ. 2021; 137: 103764.
  • Okafor CE, Okonkwo UC, Okokpujie IP. Trends in reinforced composite design for ionizing radiation shielding applications: a review. J Mat Sci. 2021; 56(20): 11631-55.
  • Özdemir HG, Demirkol İ, Erkoyuncu İ, Yılmaz M, Kaçal MR, Akman F. Bazı Tungsten İçerikli Minerallerin Gama Zırhlama Özelliklerinin Geniş Enerji Aralığında İncelenmesi. J Inst Sci Tech. 2022; 12(4): 2175-87.
  • Turhan MF, Akman F, Kaçal MR, Durak R. Calculation of Absorption Parameters for Some Selected Minerals in the Energy Range of 1 keV to 100 GeV. Int J Sci Eng Res. 2019; 10(9): 56-61.
  • Olarinoye O, Oche C. Gamma-ray and fast neutron shielding parameters of two new titanium-based bulk metallic glasses. Iran J Med Phys. 2021; 18(2): 139-147.
  • Tekin HO, ALMisned G, Susoy G, Zakaly HM, Issa SA, Kilic G, et al. A detailed investigation on highly dense CuZr bulk metallic glasses for shielding purposes. Open Chem. 2022; 20(1): 69-80.
  • Perişanoğlu U. Assessment of nuclear shielding and alpha/proton mass stopping power properties of various metallic glasses. Appl Phys A-Mater. 2019; 125(11): 1-11.
  • Tamam N, Alrowaili ZA, Elqahtani ZM, Somaily HH, Alwadai N, Sriwunkum C, et al. Significant influence of Cu content on the radiation shielding properties of Ge-Se-Te bulk glasses. Radiat Phys Chem. 2022; 193: 109981.
  • Gerward L, Guilbert N, Jensen KB, Levring H. WinXCom—a program for calculating X-ray attenuation coefficients. Radiat Phys Chem. 2004; 71(3-4): 653-4.
  • Agostinelli S, Allison J, Araujo H, Arce P, Asai M, Axen D, et al. GEANT4-a simulation toolkit. Nucl Instrum Meth A. 2003; 506 (3): 250-303.
  • Böhlen TT, Cerutti F, Chin MPW, Fassò A, Ferrari A, Ortega PG, et al. The FLUKA code: developments and challenges for high energy and medical applications. Nucl Data Sheets. 2014; 120: 211-4.
  • Goodfellow [Internet]. [cited 2023 Feb 05] Available from: https://www.goodfellow.com/uk/en-gb/displayitemdetails/p/fe80-fl-000150/iron-boron-silicon-foil
  • Goodfellow [Internet]. [cited 2023 Feb 05] Available from: https://www.goodfellow.com/uk/en-gb/displayitemdetails/p/fe82-fl-000150/iron-boron-silicon-foil
  • Goodfellow [Internet]. [cited 2023 Feb 05] Available from: https://www.goodfellow.com/uk/en-gb/displayitemdetails/p/fe81-fl-000150/iron-boron-silicon-foil
  • Goodfellow [Internet]. [cited 2023 Feb 05] Available from: https://www.goodfellow.com/uk/en-gb/displayitemdetails/p/fe83-fl-000150/iron-nickel-boron-foil
  • Gerward L, Guilbert N, Jensen KB, Levring H. X-ray absorption in matter. Reengineering XCOM. Radiat Phys Chem. 2011; 60(1-2): 23-4.
  • Kilicoglu, O, Akman F, Oğul H, Agar O, Kara U. Nuclear radiation shielding performance of borosilicate glasses: Numerical simulations and theoretical analyses. Radiat Phys Chem. 2023; 204: 110676.
  • Ozdogan, H, Kilicoglu O, Akman F, Agar O. Comparison of Monte Carlo simulations and theoretical calculations of nuclear shielding characteristics of various borate glasses including Bi, V, Fe, and Cd. Appl Radiat Isotopes. 2022; 189: 110454.

Determination of Gamma Radiation Shielding Characteristics for Some Iron-Based Metallic Glasses

Yıl 2023, Cilt: 12 Sayı: 1, 53 - 60, 27.03.2023
https://doi.org/10.46810/tdfd.1235560

Öz

In this study, the gamma radiation shielding characteristics of metallic glasses having Fe81B13.5Si3.5C2, Fe79B16Si5, Fe78B13Si9 and Fe40Ni38B18Mo4 components and coded as FeBSiC, FeBSi1, FeBSi2 and FeNiBMo were investigated. In order to investigate, the mass attenuation coefficients for metallic glasses in the photon energies range of 0.060 to 2.614 MeV were calculated with the help of WinXCOM program and GEANT4 and FLUKA simulation codes. The linear attenuation coefficient, half and tenth value layers, mean free path, effective atomic number and electron density parameters were calculated with the help of the calculated mass attenuation coefficients. Variations of the calculated gamma radiation shielding parameters with photon energy were discussed. It was observed that mass and linear attenuation coefficients, effective atomic number and electron density parameters decreased with increasing photon energy, while half and tenth value layers and mean free path parameters increased with increasing photon energy. It has been observed that metallic glasses have better gamma shielding capabilities in the low photon energy region, and metallic glass coded as FeNiBMo has better gamma radiation shielding capacity than other studied metallic glasses.

Kaynakça

  • Halimah MK, Azuraida A, Ishak M, Hasnimulyati L. Influence of bismuth oxide on gamma radiation shielding properties of boro-tellurite glass. J Non-cryst Solids. 2019; 512: 140-7.
  • Al-Buriahi MS, Sriwunkum C, Arslan H, Tonguc BT, Bourham MA. Investigation of barium borate glasses for radiation shielding applications. Appl Phys A-Mater. 2020; 126(1): 1-9.
  • El-Sharkawy RM, Shaaban KS, Elsaman R, Allam EA, El-Taher A, Mahmoud ME. Investigation of mechanical and radiation shielding characteristics of novel glass systems with the composition xNiO-20ZnO-60B2O3-(20-x) CdO based on nanometal oxides. J Non-cryst Solids. 2020; 528: 119754.
  • Kaur T, Vermani YK, Al-Buriahi MS, Alzahrani JS, Singh T. Comprehensive investigations on radiation shielding efficacy of bulk and nano Pb-Sn-Cd-Zn alloys. Phys Scripta. 2022; 97(5): 055009.
  • Turhan MF, Akman F, Taşer A, Dilsiz K, Oğul H, Kacal MR, et al. Gamma radiation shielding performance of CuxAg (1-x)-alloys: Experimental, theoretical and simulation results. Prog Nucl Energ. 2022; 143: 104036.
  • Alzahrani JS, Alrowaili ZA, Eke C, Mahmoud ZM, Mutuwong C, Al-Buriahi MS. Nuclear shielding properties of Ni-, Fe-, Pb-, and W-based alloys. Radiat Phys Chem. 2022; 195: 110090.
  • Zeyad AM, Hakeem IY, Amin M, Tayeh BA, Agwa IS. Effect of aggregate and fibre types on ultra-high-performance concrete designed for radiation shielding. J Build Eng. 2022; 58: 104960.
  • Kharita MH, Takeyeddin M, Alnassar M, Yousef S. Development of special radiation shielding concretes using natural local materials and evaluation of their shielding characteristics. Prog Nucl Energ. 2008; 50(1): 33-6.
  • Makarious AS, Bashter II, Abdo AES, Azim MSA, Kansouh WA. On the utilization of heavy concrete for radiation shielding. Ann Nucl Energy. 1996; 23(3): 195-206.
  • Cherkashina NI, Pavlenko VI, Noskov AV. Radiation shielding properties of polyimide composite materials. Radiat Phys Chem. 2019; 159: 111-7.
  • Saleh HM, Bondouk II, Salama E, Esawii HA. Consistency and shielding efficiency of cement-bitumen composite for use as gamma-radiation shielding material. Prog Nucl Energ. 2021; 137: 103764.
  • Okafor CE, Okonkwo UC, Okokpujie IP. Trends in reinforced composite design for ionizing radiation shielding applications: a review. J Mat Sci. 2021; 56(20): 11631-55.
  • Özdemir HG, Demirkol İ, Erkoyuncu İ, Yılmaz M, Kaçal MR, Akman F. Bazı Tungsten İçerikli Minerallerin Gama Zırhlama Özelliklerinin Geniş Enerji Aralığında İncelenmesi. J Inst Sci Tech. 2022; 12(4): 2175-87.
  • Turhan MF, Akman F, Kaçal MR, Durak R. Calculation of Absorption Parameters for Some Selected Minerals in the Energy Range of 1 keV to 100 GeV. Int J Sci Eng Res. 2019; 10(9): 56-61.
  • Olarinoye O, Oche C. Gamma-ray and fast neutron shielding parameters of two new titanium-based bulk metallic glasses. Iran J Med Phys. 2021; 18(2): 139-147.
  • Tekin HO, ALMisned G, Susoy G, Zakaly HM, Issa SA, Kilic G, et al. A detailed investigation on highly dense CuZr bulk metallic glasses for shielding purposes. Open Chem. 2022; 20(1): 69-80.
  • Perişanoğlu U. Assessment of nuclear shielding and alpha/proton mass stopping power properties of various metallic glasses. Appl Phys A-Mater. 2019; 125(11): 1-11.
  • Tamam N, Alrowaili ZA, Elqahtani ZM, Somaily HH, Alwadai N, Sriwunkum C, et al. Significant influence of Cu content on the radiation shielding properties of Ge-Se-Te bulk glasses. Radiat Phys Chem. 2022; 193: 109981.
  • Gerward L, Guilbert N, Jensen KB, Levring H. WinXCom—a program for calculating X-ray attenuation coefficients. Radiat Phys Chem. 2004; 71(3-4): 653-4.
  • Agostinelli S, Allison J, Araujo H, Arce P, Asai M, Axen D, et al. GEANT4-a simulation toolkit. Nucl Instrum Meth A. 2003; 506 (3): 250-303.
  • Böhlen TT, Cerutti F, Chin MPW, Fassò A, Ferrari A, Ortega PG, et al. The FLUKA code: developments and challenges for high energy and medical applications. Nucl Data Sheets. 2014; 120: 211-4.
  • Goodfellow [Internet]. [cited 2023 Feb 05] Available from: https://www.goodfellow.com/uk/en-gb/displayitemdetails/p/fe80-fl-000150/iron-boron-silicon-foil
  • Goodfellow [Internet]. [cited 2023 Feb 05] Available from: https://www.goodfellow.com/uk/en-gb/displayitemdetails/p/fe82-fl-000150/iron-boron-silicon-foil
  • Goodfellow [Internet]. [cited 2023 Feb 05] Available from: https://www.goodfellow.com/uk/en-gb/displayitemdetails/p/fe81-fl-000150/iron-boron-silicon-foil
  • Goodfellow [Internet]. [cited 2023 Feb 05] Available from: https://www.goodfellow.com/uk/en-gb/displayitemdetails/p/fe83-fl-000150/iron-nickel-boron-foil
  • Gerward L, Guilbert N, Jensen KB, Levring H. X-ray absorption in matter. Reengineering XCOM. Radiat Phys Chem. 2011; 60(1-2): 23-4.
  • Kilicoglu, O, Akman F, Oğul H, Agar O, Kara U. Nuclear radiation shielding performance of borosilicate glasses: Numerical simulations and theoretical analyses. Radiat Phys Chem. 2023; 204: 110676.
  • Ozdogan, H, Kilicoglu O, Akman F, Agar O. Comparison of Monte Carlo simulations and theoretical calculations of nuclear shielding characteristics of various borate glasses including Bi, V, Fe, and Cd. Appl Radiat Isotopes. 2022; 189: 110454.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Ferdi Akman 0000-0002-8838-1762

Yayımlanma Tarihi 27 Mart 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 12 Sayı: 1

Kaynak Göster

APA Akman, F. (2023). Determination of Gamma Radiation Shielding Characteristics for Some Iron-Based Metallic Glasses. Türk Doğa Ve Fen Dergisi, 12(1), 53-60. https://doi.org/10.46810/tdfd.1235560
AMA Akman F. Determination of Gamma Radiation Shielding Characteristics for Some Iron-Based Metallic Glasses. TDFD. Mart 2023;12(1):53-60. doi:10.46810/tdfd.1235560
Chicago Akman, Ferdi. “Determination of Gamma Radiation Shielding Characteristics for Some Iron-Based Metallic Glasses”. Türk Doğa Ve Fen Dergisi 12, sy. 1 (Mart 2023): 53-60. https://doi.org/10.46810/tdfd.1235560.
EndNote Akman F (01 Mart 2023) Determination of Gamma Radiation Shielding Characteristics for Some Iron-Based Metallic Glasses. Türk Doğa ve Fen Dergisi 12 1 53–60.
IEEE F. Akman, “Determination of Gamma Radiation Shielding Characteristics for Some Iron-Based Metallic Glasses”, TDFD, c. 12, sy. 1, ss. 53–60, 2023, doi: 10.46810/tdfd.1235560.
ISNAD Akman, Ferdi. “Determination of Gamma Radiation Shielding Characteristics for Some Iron-Based Metallic Glasses”. Türk Doğa ve Fen Dergisi 12/1 (Mart 2023), 53-60. https://doi.org/10.46810/tdfd.1235560.
JAMA Akman F. Determination of Gamma Radiation Shielding Characteristics for Some Iron-Based Metallic Glasses. TDFD. 2023;12:53–60.
MLA Akman, Ferdi. “Determination of Gamma Radiation Shielding Characteristics for Some Iron-Based Metallic Glasses”. Türk Doğa Ve Fen Dergisi, c. 12, sy. 1, 2023, ss. 53-60, doi:10.46810/tdfd.1235560.
Vancouver Akman F. Determination of Gamma Radiation Shielding Characteristics for Some Iron-Based Metallic Glasses. TDFD. 2023;12(1):53-60.