Investigation of Vegetative High Temperature Tolerance of Some Cotton (Gossypium hirsutum L.) Varieties
Yıl 2023,
Cilt: 12 Sayı: 2, 111 - 118, 22.06.2023
Yusuf Güzel Demiray
,
Remzi Ekinci
,
Adem Bardak
Öz
Our aims to scan the harmful effects of high temperature stress on vegetative development on cotton varieties registered in our country. The experiment was established in the GAPUTAEM trial area in 2020, with 4 blocks according to the Augmented design. Six standards (Tamcot Spnhix, SJU86, AGC208, STV468, ST474, Carmen) and 88 cotton varieties registered in the national variety list were used as trial material. In this study, relative cell injury rate (RCI) and leaf high temperature stress index values (LHTSI) were investigated. Our investigation results show cell membrane damage (%RCI) varied between 41.81% and 74.84%. While the average of the standards used in the experiment was 68.15%, the overall average was found to be 62.42%. Leaf high temperature stress index (LHTSI) values varied between 0.48 and 1.85, while the LHTSI average of the standards was 0.98, and the overall LHTSI average of the experiment was found to be 1.02. It was determined that there was a wide variation among the genotypes screened for vegetatively high temperature stress. Using LHTSI and RCI features, it has been concluded that it is an important, effective, easy, and applicable selection criterion for screening genotypes regarding tolerance or sensitivity to high temperature stress vegetatively in cotton plants. Applying these two parameters together is recommended to obtain more accurate results. It was determined that only the Teksa415 cotton variety was vegetatively tolerant. Vegetatively, 31 cotton genotypes were found in the medium tolerant group and 62 cotton genotypes in the sensitive group.
Destekleyen Kurum
Dicle University Scientific Research Projects Coordination Unit and General Directorate of Agricultural Research and Policies
Proje Numarası
ZİRAAT.20.007 and TAGEM/TBAD/A/20/A7/P5/1536
Teşekkür
This study was produced from the Ph.D. thesis titled " Determination of DNA Markers Associated with High Temperature Stress Tolerant / Strength in Cotton (G. hirsutum L.)" conducted by Yusuf Güzel DEMİRAY in the Department of Field Crops, Institute of Science and Technology, Dicle University. It was supported by Dicle University Scientific Research Projects Coordination Unit with project number ZİRAAT.20.007 and by the General Directorate of Agricultural Research and Policies with project number TAGEM/TBAD/A/20/A7/P5/1536. We thank the Scientific Research Coordination Unit and the General Directorate of Agricultural Research and Policies for their support.
Kaynakça
- Anonymous. Bitkisel Üretim Genel Müdürlüğü Tarla ve Bahçe Bitkileri Daire Başkanlığı Ürün Masalları- Pamuk Bülteni, Ocak 2022, sayı, 19 s4. Erişim Linki: https://www.istib.org.tr/resim/siteici/files/916_Pamuk%20B%C3%BClteni%20-%20%C3%9Cr%C3%BCn%20Masalar%C4%B1%20(Ocak%202022).pdf Erişim Tarihi: 14.02.2023, (in Turkish).
- TUIK. 2022. Türkiye Cotton Statistics. Access link: https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr, Access date: 14.02.2023.
- Yaşar, M. & Yalınkılıç, N. Main Problems and Solutions of Cotton Agriculture in Turkey. ISPEC 8th International Conference on Agriculture, Animal Sciences and Rural Development, Proceeding Book p: 620-630. ISBN: 978-625-7720-68-7. 24-25 December 2021 Bingöl, Turkey.
- Aytaç, S., Başbağ, S., Arslanoğlu, F., Ekinci, R., Ayan, A.K. Lif Bitkileri Üretiminde Mevcut Durum ve Gelecek, Türkiye Ziraat Mühendisliği IX. Teknik Kongresi, 13-17 Ocak 2020, Ankara, TMMOB Ziraat Mühendisleri Odası, Bildiri Kitabı-1, ISBN-978-605-01-1321-1, Ankara Üniversitesi Basın Yayın Müdürlüğü, S: 463-491, http://www.zmo.org.tr/resimler/ekler/37c782b9ce7a76f_ek.pdf, (in Turkish).
- Li, Z. K., Chen, B., Li, X. X., Wang, J. P., Zhang, Y., Wang, X. F., ... & Ma, Z. Y. A newly identified cluster of glutathione S‐transferase genes provides Verticillium wilt resistance in cotton. The Plant Journal, 2019; 98(2), 213-227.
Yaşar, M. Evaluation of Some New Cotton Genotypes Against Verticillum Disease (Verticillium dahliae Kled.). ISPEC Journal of Agricultural Sciences, 2022; 6(1), 110–117.
- IPPC. Intergovernmental Panel on Climate Change, Climate Change 2007: Working Group I: The Phyyssıcal science basis (online) http://www.ipcc.ch/publications_and_data/ publications_ipcc_fourth_assessment_report_wg1_report_the_phyyssıcal_science_basis.htm (verified 26 June. 2015).
- IPCC. Intergovernmental Panel on Climate Change, Climate change 2018. Synthesis report. Version ingles. Page Climate Change 2018: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
- Driedonks N, Rieu I, Riezen WH. Breeding for plant heat tolerance at vegetative and reproductive stages. Plant reprod. 2016;29(1):67–79. https://doi.org/10.1007/s00497-016-0275-9.
- Reddy KR, Hodges HF, McKinion J.M. Modeling temperature effects on cotton internode and leaf growth. Crop Sci. 1997;37: 503-509.
- Burke JJ, Wanjura D.F. Plant responses to temperature extremes. In: Physiology of cotton. Springer, 2010; pp. 123-128.
- Yaşar, M., Başbağ, S., Ekinci, R. Determination effects of topping at different times on yield and yield components in cotton. Harran Journal of Agricultural and Food Science. 2019, 23(1): 52-59, DOI: 10.29050/harranziraat. 422916.
- McCarty JC, Wu J, Jenkins J.N. Genetic association of cotton yield with its component traits in derived primitive accessions crossed by elite upland cultivars using the conditional ADAA genetic model. Euphytica. 2008;161(3):337–52. https://doi.org/10.1007/s10681-007-9562-8.
- Wang M, Tu L, Lin M, et al. Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nat gen. 2017;49(4):579–87. https://doi.org/10.1038/ng.3807.
- Ma Z, He S, Wang X, et al. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet. 2018;50(6):803–13. https://doi.org/10.1038/s41588-018-0119-7.
- Reddy, K.R., Hodges, H.F., McKinnon, J.M., and Wall, G.A. Temperature effect on Pima cotton growth and development. Agron. J. 1992;84:237-243.
- Wahid A, Gelani S, Ashraf M, Foolad M.R. Heat tolerance in plants: an overview. Environ. Exp. Bot. 2007;61:199-223.
- Bibi A, Oosterhuis D, Gonias E. Photosynthesis, the quantum yield of photosystem II and membrane leakage as affected by high temperatures in cotton genotypes. J. Cotton Sci. 2008;12: 150-159.
- Pettigrew W. The effect of higher temperatures on cotton lint yield production and fiber quality. Crop Sci. 2008;48: 278-285.
- Loka DA, Oosterhuis D.M. Effect of high night temperatures during anthesis on cotton (G. hirsutum L.) pistil and leaf physiology and biochemistry. Aust. J. Crop Sci. 2016;10(5): 741-748.
- Baker NR, Rosenqvist E. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 2004; 55:1607-1621.
- Singh RP, Prasad PV, Sunita K, Giri S, Reddy K.R. Influence of high temperature and breeding for heat tolerance in cotton: A review. Adv. Agron. 2007;93: 313-385.
- Rahman H., Malik S.A., Saleem M. Heat tolerance of upland cotton during the fruiting stage was evaluated using cellular membrane thermostability. Field Crops Res. 2004;85: 149-158.
- Azhar FM, Ali Z, Akhtar MM, Khan AA, Trethowan R. Genetic variability of heat tolerance, and its effect on yield and fiber quality traits in upland cotton (G. hirsutum L.). Plant Breed. 2009;128: 356-362.
- Karademir E. Screening cotton varieties (G. hirsutum L.) for heat tolerance under field conditions. Afr. J. Agric. Res. 2012;7: 6335-6342.
- Wanjura, D. F., Maas, S. J., Winslow, J. C., & Upchurch, D.R. Scanned and spot measured canopy temperatures of cotton and corn. Computers and Electronics in Agriculture, 2004;44(1), 33-48.
- Demiray, YG., Ekinci, R., and Yaşar, M. Characterization of F6 Generation Cotton Genotypes Developed by Double Cross Hybrid Method. International Agricultural Congress of Muş Plain, Proceedıng Book Sayfa: 89-94. ISBN: 978-605-51370-69. 24-27. September 2019 Muş, Türkiye.
- Fischer, R. A., & Maurer, R. Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research, 1978;29(5), 897-912.
- Ekinci R, Başbağ S, Karademir E, Karademir Ç. Determination of Heat Tolerance Levels of some Cotton Varieties and Lines Exist in Genetic Stock within Turkey. TUBITAK TOVAG Project p:156, Projec Number: 109O339, Diyarbakır, 2012
- Khanna-Chopra, R., and Viswanathan C. Evaluation of heat stress tolerance in an irrigated environment of T-aestivum and related species. I. Stability in yield and yield components. Euphytica 1999;106:169-180
- Roger G.P. Augmented Designs for Preliminary Yield Trials (Revised) Oregon State University, Corvallis, USA, RACHIS Vol. 4, No:1 Jan 1985 p:27-32
- Sullivan C.Y. Mechanisms of heat and drought resistance in grain sorghum and methods of measurement. Sorghum in Seventies. Oxford and IBH Pub. Co. Heat shock protein expression in thermotolerant and thermosensitive lines of cotton, 1972.
- Sajid M., Saddique M.A.B, Tahir M.H.N, Matloob A., Ali Z., Ahmad F., Shakil Q., Nisa Z.U., Kifayat M. Physiological and molecular response of cotton (Gossypium hirsutum L.) to heat stress at the seedling stage. March 2022 SABRAO journal of breeding and genetics 2022;54(1):44-52 DOI: 10.54910/sabrao2022.54.1.5.
- Farooq A., Shakeel A., Saeed A., Farooq J., Rizwan M., Chattha W.S., Sarwar G., Ramzan Y. Genetic variability predicting breeding potential of upland cotton (Gossypium hirsutum L.) for high temperature tolerance. Preprint from Research Square, 26 Aug 2022, DOI:10.21203/rs.3.rs-1957883/v1.
- Zafar S.A., Noor M.A., Waqas M.A., Wang X., Shaheen T., Raza M., Rahman M.U. Temperature Extremes in Cotton Production and Mitigation Strategies. Additional information is available at the end of the chapter, 2018. http://dx.doi.org/10.5772/intechopen.74648
- Jamil, A., Khan, S. J., & Ullah, K. Genetic diversity for cell membrane thermostability, yield and quality attributes in cotton (Gossypium hirsutum L.). Genetic Resources and Crop Evolution, 2020;67, 1405-1414.
- Singh K, Wijewardana C, Gajanayake B, Lokhande S, Wallace T, Jones D. Genotypic variability among cotton cultivars for heat and drought tolerance using reproductive and physiological traits. Euphytica 2018;214: 1-22.
- Malik MN, Chaudhry FI, Makhdum M.I. Cell membrane thermostability as a measure of heat-tolerance in cotton. Pak. J. Sci. Ind. Res. 1999;42:44-46.
- Rahman H.U. Genetic analysis of stomatal conductance in upland cotton (Gossypium hirsutum L.) under contrasting temperature regimes. J. Agric. Sci. 2005;143:161-168.
- Cottee N.S., Tan DKY, Cothren T, Bange M P, Campbell L.C. Screening Cotton Cultivars for Thermotolerance under Field Conditions, 2007. http://www.icac.org/meetings/wcrc/wcrc4/presentations/data/papers/P aper2234.pdf.
- Khan AI, Khan IA, Sadaqat H.A. Heat tolerance is variable in cotton (Gossypium hirsutum L.) and can be exploited for breeding of better yielding cultivars under high temperature regimes. Pak. J. Bot. 2008;40(5):2053-2058
- Oosterhuis DM, Bourland FM, Bibi AC, Gonias ED, Loka D, Storch D. Screening for Temperature Tolerance in Cotton. Summaries of Arkansas Cotton Research in 2008, AAES Research Series 573, 2009. http://arkansasagnews.uark.edu/573-5.pdf
- Abro S., Rizwan M., Deho Z.A., Abro S.A., Sial M.A. Identification of Heat Tolerant Cotton Lines Showing Genetic Variation in Cell Membrane Thermostability, Stomata, and Trichome Size and Its Effect on Yield and Fiber Quality Traits, 1 Plant Breeding and Genetics Division, Nuclear Institute of Agriculture (NIA), Tando Jam, Pakistan, 2 Technical Services Division, Nuclear Institute of Agriculture (NIA), 2022, Tando Jam, Pakistan. doi: 10.3389/fpls.2021.804315.
- Asha R., Ahamed L.M. Screening of cotton genotypes for heat tolerance. Int J Bioresour Stress Manag 2016;4(4):599–604.
- Majeed, S.; Rana, I.A.; Mubarik, M.S.; Atif, R.M.; Yang, S.-H.; Chung, G.; Jia, Y.; Du, X.; Hinze, L.; Azhar, M.T. Heat Stress in Cotton: A Review on Predicted and Unpredicted Growth-Yield Anomalies and Mitigating Breeding Strategies. Agronomy 2021, 11, 1825. https://doi.org/10.3390/agronomy11091825.
- Khan, A.H., Min, L., Ma1, Y., Zeeshan, M., Jin, S., Zhang, X. High-temperature stress in crops: male sterility, yield loss and potential remedy approaches. Plant Biotechnology Journal (2023) 21, pp. 680–697. doi: 10.1111/pbi.13946.
- Yousaf, M.I., Hussain, Q., Alwahibi, M.S., Aslam, M.Z., Khalid, M.Z., Hussain, S., Zafar, A., Shah, S.A.S., Abbasi, A.M., Mehboob, A., Riaz, M.W., Elshikh, M.S. Impact of heat stress on agro-morphological, physio-chemical and fiber related paramters in upland cotton (Gossypium hirsutum L.) genotypes. Journal of King Saud University – Science, 35 (2023) 102379, https://doi.org/10.1016/j.jksus.2022.102379.
Bazı Pamuk (Gossypium hirsutum L.) Çeşitlerin Vejetatif Olarak Yüksek Sıcaklığa Karşı Tolerantlıklarının İncelenmesi
Yıl 2023,
Cilt: 12 Sayı: 2, 111 - 118, 22.06.2023
Yusuf Güzel Demiray
,
Remzi Ekinci
,
Adem Bardak
Öz
Amacımız, yüksek sıcaklık stresinin, vejetatif gelişime olan zararlı etkilerinin ülkemizde tescilli pamuk çeşitlerinin taranmasıdır. Deneme, 2020 yılında GAPUTAEM deneme alanında, Augmented deneme desenine göre 4 bloklu olarak kurulmuştur. 6 adet standart (Tamcot Spnhix, SJU86, AGC208, STV468, ST474, Carmen) pamuk genotipi ile milli çeşit listesinde kayıtlı 88 adet pamuk çeşidi deneme materyali olarak kullanılmıştır. Bu araştırmada, bağıl hücre zararlanma oranı (RCI) ile yaprak yüksek sıcaklık stres indeks değerleri (YYSSI) incelenmiştir. Hücre membran hasarı (%RCI) %41.81 ile %74.84 arasında değişim göstermiş; standartların ortalaması %68.15 iken, genel ortalama %62.42 olarak saptanmıştır. Yaprak yüksek sıcaklık stres indeks (YYSSI) değerleri 0.48 ile 1.85 arasında değişmiş olup, standartların YYSSI ortalaması 0.98 iken, denemenin genel YYSSI ortalamasının 1.02 olarak saptanmıştır. Vejetatif olarak yüksek sıcaklık stresi için taranan genotipler arasında geniş bir varyasyon olduğu belirlenmiştir. YYSSI ve RCI özellikleri kullanılarak pamuk bitkisinde vejetatif olarak yüksek sıcaklık stresine karşı tolerantlık veya hassasiyetlik konusunda genotiplerin taranması için önemli, etkili, kolay ve uygulanabilir seçim kriteri olduğu kanısına varılmıştır. Bu iki parametrenin beraber uygulanmasının daha doğru sonuçlar elde edilmesi bakımından tavsiye edilmektedir. Sadece Teksa415 pamuk çeşidinin vejetatif olarak tolerant grubuna girdiği tespit edilmiştir. Vejetatif olarak, orta tolerant gruba 31 adet, hassas gruba ise 62 adet pamuk genotipinin girdiği saptanmıştır.
Proje Numarası
ZİRAAT.20.007 and TAGEM/TBAD/A/20/A7/P5/1536
Kaynakça
- Anonymous. Bitkisel Üretim Genel Müdürlüğü Tarla ve Bahçe Bitkileri Daire Başkanlığı Ürün Masalları- Pamuk Bülteni, Ocak 2022, sayı, 19 s4. Erişim Linki: https://www.istib.org.tr/resim/siteici/files/916_Pamuk%20B%C3%BClteni%20-%20%C3%9Cr%C3%BCn%20Masalar%C4%B1%20(Ocak%202022).pdf Erişim Tarihi: 14.02.2023, (in Turkish).
- TUIK. 2022. Türkiye Cotton Statistics. Access link: https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr, Access date: 14.02.2023.
- Yaşar, M. & Yalınkılıç, N. Main Problems and Solutions of Cotton Agriculture in Turkey. ISPEC 8th International Conference on Agriculture, Animal Sciences and Rural Development, Proceeding Book p: 620-630. ISBN: 978-625-7720-68-7. 24-25 December 2021 Bingöl, Turkey.
- Aytaç, S., Başbağ, S., Arslanoğlu, F., Ekinci, R., Ayan, A.K. Lif Bitkileri Üretiminde Mevcut Durum ve Gelecek, Türkiye Ziraat Mühendisliği IX. Teknik Kongresi, 13-17 Ocak 2020, Ankara, TMMOB Ziraat Mühendisleri Odası, Bildiri Kitabı-1, ISBN-978-605-01-1321-1, Ankara Üniversitesi Basın Yayın Müdürlüğü, S: 463-491, http://www.zmo.org.tr/resimler/ekler/37c782b9ce7a76f_ek.pdf, (in Turkish).
- Li, Z. K., Chen, B., Li, X. X., Wang, J. P., Zhang, Y., Wang, X. F., ... & Ma, Z. Y. A newly identified cluster of glutathione S‐transferase genes provides Verticillium wilt resistance in cotton. The Plant Journal, 2019; 98(2), 213-227.
Yaşar, M. Evaluation of Some New Cotton Genotypes Against Verticillum Disease (Verticillium dahliae Kled.). ISPEC Journal of Agricultural Sciences, 2022; 6(1), 110–117.
- IPPC. Intergovernmental Panel on Climate Change, Climate Change 2007: Working Group I: The Phyyssıcal science basis (online) http://www.ipcc.ch/publications_and_data/ publications_ipcc_fourth_assessment_report_wg1_report_the_phyyssıcal_science_basis.htm (verified 26 June. 2015).
- IPCC. Intergovernmental Panel on Climate Change, Climate change 2018. Synthesis report. Version ingles. Page Climate Change 2018: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
- Driedonks N, Rieu I, Riezen WH. Breeding for plant heat tolerance at vegetative and reproductive stages. Plant reprod. 2016;29(1):67–79. https://doi.org/10.1007/s00497-016-0275-9.
- Reddy KR, Hodges HF, McKinion J.M. Modeling temperature effects on cotton internode and leaf growth. Crop Sci. 1997;37: 503-509.
- Burke JJ, Wanjura D.F. Plant responses to temperature extremes. In: Physiology of cotton. Springer, 2010; pp. 123-128.
- Yaşar, M., Başbağ, S., Ekinci, R. Determination effects of topping at different times on yield and yield components in cotton. Harran Journal of Agricultural and Food Science. 2019, 23(1): 52-59, DOI: 10.29050/harranziraat. 422916.
- McCarty JC, Wu J, Jenkins J.N. Genetic association of cotton yield with its component traits in derived primitive accessions crossed by elite upland cultivars using the conditional ADAA genetic model. Euphytica. 2008;161(3):337–52. https://doi.org/10.1007/s10681-007-9562-8.
- Wang M, Tu L, Lin M, et al. Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nat gen. 2017;49(4):579–87. https://doi.org/10.1038/ng.3807.
- Ma Z, He S, Wang X, et al. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet. 2018;50(6):803–13. https://doi.org/10.1038/s41588-018-0119-7.
- Reddy, K.R., Hodges, H.F., McKinnon, J.M., and Wall, G.A. Temperature effect on Pima cotton growth and development. Agron. J. 1992;84:237-243.
- Wahid A, Gelani S, Ashraf M, Foolad M.R. Heat tolerance in plants: an overview. Environ. Exp. Bot. 2007;61:199-223.
- Bibi A, Oosterhuis D, Gonias E. Photosynthesis, the quantum yield of photosystem II and membrane leakage as affected by high temperatures in cotton genotypes. J. Cotton Sci. 2008;12: 150-159.
- Pettigrew W. The effect of higher temperatures on cotton lint yield production and fiber quality. Crop Sci. 2008;48: 278-285.
- Loka DA, Oosterhuis D.M. Effect of high night temperatures during anthesis on cotton (G. hirsutum L.) pistil and leaf physiology and biochemistry. Aust. J. Crop Sci. 2016;10(5): 741-748.
- Baker NR, Rosenqvist E. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 2004; 55:1607-1621.
- Singh RP, Prasad PV, Sunita K, Giri S, Reddy K.R. Influence of high temperature and breeding for heat tolerance in cotton: A review. Adv. Agron. 2007;93: 313-385.
- Rahman H., Malik S.A., Saleem M. Heat tolerance of upland cotton during the fruiting stage was evaluated using cellular membrane thermostability. Field Crops Res. 2004;85: 149-158.
- Azhar FM, Ali Z, Akhtar MM, Khan AA, Trethowan R. Genetic variability of heat tolerance, and its effect on yield and fiber quality traits in upland cotton (G. hirsutum L.). Plant Breed. 2009;128: 356-362.
- Karademir E. Screening cotton varieties (G. hirsutum L.) for heat tolerance under field conditions. Afr. J. Agric. Res. 2012;7: 6335-6342.
- Wanjura, D. F., Maas, S. J., Winslow, J. C., & Upchurch, D.R. Scanned and spot measured canopy temperatures of cotton and corn. Computers and Electronics in Agriculture, 2004;44(1), 33-48.
- Demiray, YG., Ekinci, R., and Yaşar, M. Characterization of F6 Generation Cotton Genotypes Developed by Double Cross Hybrid Method. International Agricultural Congress of Muş Plain, Proceedıng Book Sayfa: 89-94. ISBN: 978-605-51370-69. 24-27. September 2019 Muş, Türkiye.
- Fischer, R. A., & Maurer, R. Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research, 1978;29(5), 897-912.
- Ekinci R, Başbağ S, Karademir E, Karademir Ç. Determination of Heat Tolerance Levels of some Cotton Varieties and Lines Exist in Genetic Stock within Turkey. TUBITAK TOVAG Project p:156, Projec Number: 109O339, Diyarbakır, 2012
- Khanna-Chopra, R., and Viswanathan C. Evaluation of heat stress tolerance in an irrigated environment of T-aestivum and related species. I. Stability in yield and yield components. Euphytica 1999;106:169-180
- Roger G.P. Augmented Designs for Preliminary Yield Trials (Revised) Oregon State University, Corvallis, USA, RACHIS Vol. 4, No:1 Jan 1985 p:27-32
- Sullivan C.Y. Mechanisms of heat and drought resistance in grain sorghum and methods of measurement. Sorghum in Seventies. Oxford and IBH Pub. Co. Heat shock protein expression in thermotolerant and thermosensitive lines of cotton, 1972.
- Sajid M., Saddique M.A.B, Tahir M.H.N, Matloob A., Ali Z., Ahmad F., Shakil Q., Nisa Z.U., Kifayat M. Physiological and molecular response of cotton (Gossypium hirsutum L.) to heat stress at the seedling stage. March 2022 SABRAO journal of breeding and genetics 2022;54(1):44-52 DOI: 10.54910/sabrao2022.54.1.5.
- Farooq A., Shakeel A., Saeed A., Farooq J., Rizwan M., Chattha W.S., Sarwar G., Ramzan Y. Genetic variability predicting breeding potential of upland cotton (Gossypium hirsutum L.) for high temperature tolerance. Preprint from Research Square, 26 Aug 2022, DOI:10.21203/rs.3.rs-1957883/v1.
- Zafar S.A., Noor M.A., Waqas M.A., Wang X., Shaheen T., Raza M., Rahman M.U. Temperature Extremes in Cotton Production and Mitigation Strategies. Additional information is available at the end of the chapter, 2018. http://dx.doi.org/10.5772/intechopen.74648
- Jamil, A., Khan, S. J., & Ullah, K. Genetic diversity for cell membrane thermostability, yield and quality attributes in cotton (Gossypium hirsutum L.). Genetic Resources and Crop Evolution, 2020;67, 1405-1414.
- Singh K, Wijewardana C, Gajanayake B, Lokhande S, Wallace T, Jones D. Genotypic variability among cotton cultivars for heat and drought tolerance using reproductive and physiological traits. Euphytica 2018;214: 1-22.
- Malik MN, Chaudhry FI, Makhdum M.I. Cell membrane thermostability as a measure of heat-tolerance in cotton. Pak. J. Sci. Ind. Res. 1999;42:44-46.
- Rahman H.U. Genetic analysis of stomatal conductance in upland cotton (Gossypium hirsutum L.) under contrasting temperature regimes. J. Agric. Sci. 2005;143:161-168.
- Cottee N.S., Tan DKY, Cothren T, Bange M P, Campbell L.C. Screening Cotton Cultivars for Thermotolerance under Field Conditions, 2007. http://www.icac.org/meetings/wcrc/wcrc4/presentations/data/papers/P aper2234.pdf.
- Khan AI, Khan IA, Sadaqat H.A. Heat tolerance is variable in cotton (Gossypium hirsutum L.) and can be exploited for breeding of better yielding cultivars under high temperature regimes. Pak. J. Bot. 2008;40(5):2053-2058
- Oosterhuis DM, Bourland FM, Bibi AC, Gonias ED, Loka D, Storch D. Screening for Temperature Tolerance in Cotton. Summaries of Arkansas Cotton Research in 2008, AAES Research Series 573, 2009. http://arkansasagnews.uark.edu/573-5.pdf
- Abro S., Rizwan M., Deho Z.A., Abro S.A., Sial M.A. Identification of Heat Tolerant Cotton Lines Showing Genetic Variation in Cell Membrane Thermostability, Stomata, and Trichome Size and Its Effect on Yield and Fiber Quality Traits, 1 Plant Breeding and Genetics Division, Nuclear Institute of Agriculture (NIA), Tando Jam, Pakistan, 2 Technical Services Division, Nuclear Institute of Agriculture (NIA), 2022, Tando Jam, Pakistan. doi: 10.3389/fpls.2021.804315.
- Asha R., Ahamed L.M. Screening of cotton genotypes for heat tolerance. Int J Bioresour Stress Manag 2016;4(4):599–604.
- Majeed, S.; Rana, I.A.; Mubarik, M.S.; Atif, R.M.; Yang, S.-H.; Chung, G.; Jia, Y.; Du, X.; Hinze, L.; Azhar, M.T. Heat Stress in Cotton: A Review on Predicted and Unpredicted Growth-Yield Anomalies and Mitigating Breeding Strategies. Agronomy 2021, 11, 1825. https://doi.org/10.3390/agronomy11091825.
- Khan, A.H., Min, L., Ma1, Y., Zeeshan, M., Jin, S., Zhang, X. High-temperature stress in crops: male sterility, yield loss and potential remedy approaches. Plant Biotechnology Journal (2023) 21, pp. 680–697. doi: 10.1111/pbi.13946.
- Yousaf, M.I., Hussain, Q., Alwahibi, M.S., Aslam, M.Z., Khalid, M.Z., Hussain, S., Zafar, A., Shah, S.A.S., Abbasi, A.M., Mehboob, A., Riaz, M.W., Elshikh, M.S. Impact of heat stress on agro-morphological, physio-chemical and fiber related paramters in upland cotton (Gossypium hirsutum L.) genotypes. Journal of King Saud University – Science, 35 (2023) 102379, https://doi.org/10.1016/j.jksus.2022.102379.