Araştırma Makalesi
BibTex RIS Kaynak Göster

Renewable Energy and Hydrogen Storage System Analysis for Carbon Neutral Campuses with HOMER

Yıl 2025, Cilt: 14 Sayı: 1, 136 - 145, 26.03.2025
https://doi.org/10.46810/tdfd.1599440

Öz

This study focuses on the design and techno-economic analysis of a Hybrid Energy System (HES) aimed at reducing carbon emissions for Dicle University in Diyarbakır, Turkey. The system integrates photovoltaic panels (PV), wind turbines (WT), battery storage systems (BSS), electrolyzers, and hydrogen storage tanks (HST) to create a sustainable and efficient energy solution. Diyarbakır’s high solar radiation and wind potential make it a suitable location for such an implementation. HOMER Pro software was utilized to model and optimize the system based on local meteorological data, evaluating the technical and economic performance. The designed HRES meets a daily energy demand of 34.3 kWh and is composed of an 8 kW PV array, a 5 kW WT, an 18 kWh BSS, a 7 kW electrolyzer, and a 400 kg hydrogen storage capacity. The system has a total capital cost of $287,577, a Net Present Cost (NPC) of $588,188, and a Levelized Cost of Energy (LCOE) of $11.09/kWh. The results demonstrate the feasibility and efficiency of integrating renewable energy with hydrogen storage to achieve energy reliability, sustainability, and reduced carbon emissions.

Etik Beyan

There is no need for an Ethics Committee Certificate for our study.

Kaynakça

  • Doğan, S., Haydaroğlu, C., Gümüş, B., & Mohammadzadeh, A. (2024, November). Innovative fuzzy logic type 3 controller for transient and maximum power point tracking in hydrogen fuel cells. International Journal of Hydrogen Energy, (August).
  • Aydın, F., & Öztürk, D. (2024, August). Design and techno-economic analysis of hybrid power systems for rural areas: A case study of Bingöl. Electricity, 5(3), 562–584.
  • Iqbal, R., Liu, Y., Zeng, Y., Zhang, Q., & Zeeshan, M. (2024). Comparative study based on techno-economics analysis of different shipboard microgrid systems comprising PV/wind/fuel cell/battery/diesel generator with two battery technologies: A step toward green maritime transportation. Renewable Energy, 221(July), 119670.
  • Haydaroğlu, C., Kılıç, H., & Gümüş, B. (2024, September). Performance analysis and comparison of performance ratio of solar power plant. Turkish Journal of Electrical Power and Energy Systems.
  • Purlu, M., & Ozkan, U. (2023, February). Economic and environmental analysis of grid-connected rooftop photovoltaic system using HOMER. Turkish Journal of Electrical Power and Energy Systems, 3(1), 39–46.
  • Haydaroğlu, C., Yıldırım, B., Kılıç, H., & Özdemir, M. T. (2024, November). The effect of local and interarea oscillations of wind turbine generators based on permanent magnet synchronous generators connected to a power system. Turkish Journal of Electrical Power and Energy Systems.
  • Köprü, M. A., Öztürk, D., & Yıldırım, B. (2024, August). Farklı rüzgâr hızı ve güneş radyasyon oranına sahip bölgeler için mikro şebeke tasarımı ve karşılaştırmalı analizi. DÜMF Mühendislik Dergisi, 3, 607–613.
  • Kilic, H. (2024). Improving the performance of microgrid-based Power-to-X systems through optimization of renewable hydrogen generation. International Journal of Hydrogen Energy, (November 2023).
  • Shahzad, S., Alsenani, T. R., Kilic, H., & Wheeler, P. (2024, December). Techno-economic analysis of green hydrogen integration in smart grids: Pathways to sustainable energy systems. International Journal of Hydrogen Energy, (July).
  • Haydaroğlu, C. (2025, January). Chaos-based optimization for load frequency control in islanded airport microgrids with hydrogen energy and electric aircraft. International Journal of Hydrogen Energy, (October 2024).
  • Khaleel, M., et al. (2025, January). Harnessing nuclear power for sustainable electricity generation and achieving zero emissions. Energy Exploration & Exploitation, 1–23.
  • Polat, S., & Bıyık, E. (2024, November). Evaluation of centralized and distributed energy storage systems in residential microgrid topologies. Turkish Journal of Electrical Power and Energy Systems, 1–14.
  • Pinto, J. O. C. P., & Moreto, M. (2021, January). Protection strategy for fault detection in inverter-dominated low voltage AC microgrid. Electric Power Systems Research, 190(April 2020), 106572.
  • Sabzehgar, R. A. A., Kazemi, M. A., Rasouli, M., & Fajri, P. (2020, January). Cost optimization and reliability assessment of a microgrid with large-scale plug-in electric vehicles participating in demand response programs. International Journal of Green Energy, 17(2), 127–136.
  • Yimen, N., et al. (2022, October). Optimal design and sensitivity analysis of distributed biomass‐based hybrid renewable energy systems for rural electrification: Case study of different photovoltaic/wind/battery‐integrated options in Babadam, northern Cameroon. IET Renewable Power Generation, 16(14), 2939–2956.
  • Zhang, G., Xiao, C., & Razmjooy, N. (2022, December). Optimal operational strategy of hybrid PV/wind renewable energy system using homer: A case study. International Journal of Ambient Energy, 43(1), 3953–3966.
  • Talari, S., Shafie-khah, M., Osório, G. J., Aghaei, J., & Catalão, J. P. S. (2018, January). Stochastic modelling of renewable energy sources from operators’ point-of-view: A survey. Renewable and Sustainable Energy Reviews, 81(June 2017), 1953–1965.
  • Sinha, S., & Chandel, S. S. (2014, April). Review of software tools for hybrid renewable energy systems. Renewable and Sustainable Energy Reviews, 32, 192–205.
  • Tozzi, P., & Jo, J. H. (2017). A comparative analysis of renewable energy simulation tools: Performance simulation model vs. system optimization. Renewable and Sustainable Energy Reviews, 80(August 2016), 390–398.
  • Ammari, C., Belatrache, D., Touhami, B., & Makhloufi, S. (2022, October). Sizing, optimization, control and energy management of hybrid renewable energy system—A review. Energy and Built Environment, 3(4), 399–411.
  • Caliskan, A., & Percin, H. B. (2024, July). Techno-economic analysis of a campus-based hydrogen-producing hybrid system. International Journal of Hydrogen Energy, 75(October 2023), 428–437.
  • Syed Mohammed, A., Anuj, Lodhi, A. S., & Murtaza, Q. (2022, August). Techno‐economic feasibility of hydrogen based electric vehicle charging station: A case study. International Journal of Energy Research, 46(10), 14145–14160.
  • Ayodele, T. R., Mosetlhe, T. C., Yusuff, A. A., & Ntombela, M. (2021). Optimal design of wind-powered hydrogen refuelling station for some selected cities of South Africa. International Journal of Hydrogen Energy, 46(49), 24919–24930.
  • Basu, S., John, A., Akshay, & Kumar, A. (2021). Design and feasibility analysis of hydrogen based hybrid energy system: A case study. International Journal of Hydrogen Energy, 46(70), 34574–34586.
  • Okonkwo, P. C. (2024). A case study on hydrogen refueling station techno-economic viability. International Journal of Hydrogen Energy, 49(PD), 736–746.
  • Priyanka, T. J., Atre, S., Billal, M. M., & Arani, M. (2023). Techno-economic analysis of a renewable-based hybrid energy system for utility and transportation facilities in a remote community of Northern Alberta. Cleaner Energy Systems, 6(September 2022).
  • Köprü, M. A., Öztürk, D., & Yıldırım, B. (2024). A dispatch strategy for the analysis of the technical, economic, and environmental performance of a hybrid renewable energy system. Sustainability, 16(17), 7490.
  • Yusupov, Z., & Almagrahı, N. (2023). Techno-economic and environmental analysis of microgrid: A case study of Karabuk University. Sigma Journal of Engineering and Natural Sciences – Sigma Mühendislik ve Fen Bilimleri Dergisi, 41(4), 758–769.
  • Acar, C., Erturk, E., & Firtina-Ertis. (2023). Performance analysis of a stand-alone integrated solar hydrogen energy system for zero energy buildings. International Journal of Hydrogen Energy, 48(5), 1664–1684.
  • Jenkins, P., & Sonar, A. C. (2020). Feasibility analysis of an islanded microgrid in Tohatchi, New Mexico using HOMER Pro. Energy and Power Engineering, 12(6), 357–374.
  • Haydaroğlu, C., & Gümüş, B. (2016). Dicle Üniversitesi güneş enerjisi santralinin PVsyst ile simülasyonu ve performans parametrelerinin değerlendirilmesi. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 00(412), 491–500.
  • Haydaroğlu, C., & Gümüş, B. (2017). Investigation of the effect of short term environmental contamination on energy production in photovoltaic panels: Dicle University solar power plant example. Applied Solar Energy, 53(1), 31–34.
  • Deshmukh, M. K., & Singh, A. B. (2019). Modeling of energy performance of stand-alone SPV system using HOMER pro. Energy Procedia, 156(September 2018), 90–94.
  • Mohammed, O. H., Amirat, Y., Benbouzid, M., Elbast, A., Mohammed, O. H., & Amirat, Y. (2014). Optimal design of a PV / fuel cell hybrid power system for the city of Brest in France. [Conference paper or journal info missing], 119–123.
  • Alazemi, J., & Andrews, J. (2015, August). Automotive hydrogen fuelling stations: An international review. Renewable and Sustainable Energy Reviews, 48, 483–499.
  • Gorgun, H. (2006, January). Dynamic modelling of a proton exchange membrane (PEM) electrolyzer. International Journal of Hydrogen Energy, 31(1), 29–38.
  • Luta, D. N., & Raji, A. K. (2018, May). Decision-making between a grid extension and a rural renewable off-grid system with hydrogen generation. International Journal of Hydrogen Energy, 43(20), 9535–9548.
  • Abdelhady, S. (2021). Performance and cost evaluation of solar dish power plant: Sensitivity analysis of levelized cost of electricity (LCOE) and net present value (NPV). Renewable Energy, 168, 332–342.
  • Shen, W., et al. (2020). A comprehensive review of variable renewable energy levelized cost of electricity. Renewable and Sustainable Energy Reviews, 133(August), 110301.
  • Siyal, S. H., Mentis, D., & Howells, M. (2015, August). Economic analysis of standalone wind-powered hydrogen refueling stations for road transport at selected sites in Sweden. International Journal of Hydrogen Energy, 40(32), 9855–9865.

Karbon Nötr Kampüsler için Homer ile Yenilenebilir Enerji ve Hidrojen Depolama Sistemleri Analizi

Yıl 2025, Cilt: 14 Sayı: 1, 136 - 145, 26.03.2025
https://doi.org/10.46810/tdfd.1599440

Öz

Bu çalışmada, Türkiye'deki Dicle Üniversitesi için karbon emisyonlarını azaltmayı amaçlayan bir Hibrit Enerji Sisteminin (HES) tasarımına ve tekno-ekonomik analizine odaklanmaktadır. Sistem, sürdürülebilir ve verimli bir enerji çözümü oluşturmak için fotovoltaik panelleri (PV), rüzgar türbinlerini (WT), pil depolama sistemlerini (BSS), elektrolizörleri ve hidrojen depolama tanklarını (HST) entegre etmektedir. Diyarbakır'ın yüksek güneş radyasyonu ve rüzgar potansiyeli, onu böyle bir uygulama için uygun bir yer haline getirmektedir. HOMER Pro yazılımı, yerel meteorolojik verilere dayanarak sistemi modellemek ve optimize etmek, teknik ve ekonomik performansı değerlendirmek için kullanılmıştır. Tasarlanan HRES, günlük 34,3 kWh enerji talebini karşılamakta olup, 8 kW PV dizisi, 5 kW WT, 18 kWh BSS, 7 kW elektrolizör ve 400 kg hidrojen depolama kapasitesinden oluşmaktadır. Sistemin toplam sermaye maliyeti 287.577$, Net Mevcut Maliyet (NPC) 588.188$ ve Dengelenmiş Enerji Maliyeti (LCOE) 11,09$/kWh'dir. Sonuçlar, enerji güvenilirliği, sürdürülebilirlik ve azaltılmış karbon emisyonları elde etmek için yenilenebilir enerjiyi hidrojen depolamayla entegre etmenin uygulanabilirliğini ve verimliliğini göstermektedir.

Etik Beyan

Çalışmamız için Etik Kurul Belgesine İhtiyaç Yoktur

Kaynakça

  • Doğan, S., Haydaroğlu, C., Gümüş, B., & Mohammadzadeh, A. (2024, November). Innovative fuzzy logic type 3 controller for transient and maximum power point tracking in hydrogen fuel cells. International Journal of Hydrogen Energy, (August).
  • Aydın, F., & Öztürk, D. (2024, August). Design and techno-economic analysis of hybrid power systems for rural areas: A case study of Bingöl. Electricity, 5(3), 562–584.
  • Iqbal, R., Liu, Y., Zeng, Y., Zhang, Q., & Zeeshan, M. (2024). Comparative study based on techno-economics analysis of different shipboard microgrid systems comprising PV/wind/fuel cell/battery/diesel generator with two battery technologies: A step toward green maritime transportation. Renewable Energy, 221(July), 119670.
  • Haydaroğlu, C., Kılıç, H., & Gümüş, B. (2024, September). Performance analysis and comparison of performance ratio of solar power plant. Turkish Journal of Electrical Power and Energy Systems.
  • Purlu, M., & Ozkan, U. (2023, February). Economic and environmental analysis of grid-connected rooftop photovoltaic system using HOMER. Turkish Journal of Electrical Power and Energy Systems, 3(1), 39–46.
  • Haydaroğlu, C., Yıldırım, B., Kılıç, H., & Özdemir, M. T. (2024, November). The effect of local and interarea oscillations of wind turbine generators based on permanent magnet synchronous generators connected to a power system. Turkish Journal of Electrical Power and Energy Systems.
  • Köprü, M. A., Öztürk, D., & Yıldırım, B. (2024, August). Farklı rüzgâr hızı ve güneş radyasyon oranına sahip bölgeler için mikro şebeke tasarımı ve karşılaştırmalı analizi. DÜMF Mühendislik Dergisi, 3, 607–613.
  • Kilic, H. (2024). Improving the performance of microgrid-based Power-to-X systems through optimization of renewable hydrogen generation. International Journal of Hydrogen Energy, (November 2023).
  • Shahzad, S., Alsenani, T. R., Kilic, H., & Wheeler, P. (2024, December). Techno-economic analysis of green hydrogen integration in smart grids: Pathways to sustainable energy systems. International Journal of Hydrogen Energy, (July).
  • Haydaroğlu, C. (2025, January). Chaos-based optimization for load frequency control in islanded airport microgrids with hydrogen energy and electric aircraft. International Journal of Hydrogen Energy, (October 2024).
  • Khaleel, M., et al. (2025, January). Harnessing nuclear power for sustainable electricity generation and achieving zero emissions. Energy Exploration & Exploitation, 1–23.
  • Polat, S., & Bıyık, E. (2024, November). Evaluation of centralized and distributed energy storage systems in residential microgrid topologies. Turkish Journal of Electrical Power and Energy Systems, 1–14.
  • Pinto, J. O. C. P., & Moreto, M. (2021, January). Protection strategy for fault detection in inverter-dominated low voltage AC microgrid. Electric Power Systems Research, 190(April 2020), 106572.
  • Sabzehgar, R. A. A., Kazemi, M. A., Rasouli, M., & Fajri, P. (2020, January). Cost optimization and reliability assessment of a microgrid with large-scale plug-in electric vehicles participating in demand response programs. International Journal of Green Energy, 17(2), 127–136.
  • Yimen, N., et al. (2022, October). Optimal design and sensitivity analysis of distributed biomass‐based hybrid renewable energy systems for rural electrification: Case study of different photovoltaic/wind/battery‐integrated options in Babadam, northern Cameroon. IET Renewable Power Generation, 16(14), 2939–2956.
  • Zhang, G., Xiao, C., & Razmjooy, N. (2022, December). Optimal operational strategy of hybrid PV/wind renewable energy system using homer: A case study. International Journal of Ambient Energy, 43(1), 3953–3966.
  • Talari, S., Shafie-khah, M., Osório, G. J., Aghaei, J., & Catalão, J. P. S. (2018, January). Stochastic modelling of renewable energy sources from operators’ point-of-view: A survey. Renewable and Sustainable Energy Reviews, 81(June 2017), 1953–1965.
  • Sinha, S., & Chandel, S. S. (2014, April). Review of software tools for hybrid renewable energy systems. Renewable and Sustainable Energy Reviews, 32, 192–205.
  • Tozzi, P., & Jo, J. H. (2017). A comparative analysis of renewable energy simulation tools: Performance simulation model vs. system optimization. Renewable and Sustainable Energy Reviews, 80(August 2016), 390–398.
  • Ammari, C., Belatrache, D., Touhami, B., & Makhloufi, S. (2022, October). Sizing, optimization, control and energy management of hybrid renewable energy system—A review. Energy and Built Environment, 3(4), 399–411.
  • Caliskan, A., & Percin, H. B. (2024, July). Techno-economic analysis of a campus-based hydrogen-producing hybrid system. International Journal of Hydrogen Energy, 75(October 2023), 428–437.
  • Syed Mohammed, A., Anuj, Lodhi, A. S., & Murtaza, Q. (2022, August). Techno‐economic feasibility of hydrogen based electric vehicle charging station: A case study. International Journal of Energy Research, 46(10), 14145–14160.
  • Ayodele, T. R., Mosetlhe, T. C., Yusuff, A. A., & Ntombela, M. (2021). Optimal design of wind-powered hydrogen refuelling station for some selected cities of South Africa. International Journal of Hydrogen Energy, 46(49), 24919–24930.
  • Basu, S., John, A., Akshay, & Kumar, A. (2021). Design and feasibility analysis of hydrogen based hybrid energy system: A case study. International Journal of Hydrogen Energy, 46(70), 34574–34586.
  • Okonkwo, P. C. (2024). A case study on hydrogen refueling station techno-economic viability. International Journal of Hydrogen Energy, 49(PD), 736–746.
  • Priyanka, T. J., Atre, S., Billal, M. M., & Arani, M. (2023). Techno-economic analysis of a renewable-based hybrid energy system for utility and transportation facilities in a remote community of Northern Alberta. Cleaner Energy Systems, 6(September 2022).
  • Köprü, M. A., Öztürk, D., & Yıldırım, B. (2024). A dispatch strategy for the analysis of the technical, economic, and environmental performance of a hybrid renewable energy system. Sustainability, 16(17), 7490.
  • Yusupov, Z., & Almagrahı, N. (2023). Techno-economic and environmental analysis of microgrid: A case study of Karabuk University. Sigma Journal of Engineering and Natural Sciences – Sigma Mühendislik ve Fen Bilimleri Dergisi, 41(4), 758–769.
  • Acar, C., Erturk, E., & Firtina-Ertis. (2023). Performance analysis of a stand-alone integrated solar hydrogen energy system for zero energy buildings. International Journal of Hydrogen Energy, 48(5), 1664–1684.
  • Jenkins, P., & Sonar, A. C. (2020). Feasibility analysis of an islanded microgrid in Tohatchi, New Mexico using HOMER Pro. Energy and Power Engineering, 12(6), 357–374.
  • Haydaroğlu, C., & Gümüş, B. (2016). Dicle Üniversitesi güneş enerjisi santralinin PVsyst ile simülasyonu ve performans parametrelerinin değerlendirilmesi. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 00(412), 491–500.
  • Haydaroğlu, C., & Gümüş, B. (2017). Investigation of the effect of short term environmental contamination on energy production in photovoltaic panels: Dicle University solar power plant example. Applied Solar Energy, 53(1), 31–34.
  • Deshmukh, M. K., & Singh, A. B. (2019). Modeling of energy performance of stand-alone SPV system using HOMER pro. Energy Procedia, 156(September 2018), 90–94.
  • Mohammed, O. H., Amirat, Y., Benbouzid, M., Elbast, A., Mohammed, O. H., & Amirat, Y. (2014). Optimal design of a PV / fuel cell hybrid power system for the city of Brest in France. [Conference paper or journal info missing], 119–123.
  • Alazemi, J., & Andrews, J. (2015, August). Automotive hydrogen fuelling stations: An international review. Renewable and Sustainable Energy Reviews, 48, 483–499.
  • Gorgun, H. (2006, January). Dynamic modelling of a proton exchange membrane (PEM) electrolyzer. International Journal of Hydrogen Energy, 31(1), 29–38.
  • Luta, D. N., & Raji, A. K. (2018, May). Decision-making between a grid extension and a rural renewable off-grid system with hydrogen generation. International Journal of Hydrogen Energy, 43(20), 9535–9548.
  • Abdelhady, S. (2021). Performance and cost evaluation of solar dish power plant: Sensitivity analysis of levelized cost of electricity (LCOE) and net present value (NPV). Renewable Energy, 168, 332–342.
  • Shen, W., et al. (2020). A comprehensive review of variable renewable energy levelized cost of electricity. Renewable and Sustainable Energy Reviews, 133(August), 110301.
  • Siyal, S. H., Mentis, D., & Howells, M. (2015, August). Economic analysis of standalone wind-powered hydrogen refueling stations for road transport at selected sites in Sweden. International Journal of Hydrogen Energy, 40(32), 9855–9865.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Enerjisi Depolama, Elektrik Enerjisi Üretimi (Yenilenebilir Kaynaklar Dahil, Fotovoltaikler Hariç), Elektrik Tesisleri
Bölüm Makaleler
Yazarlar

Faruk Barlaz 0009-0003-2703-0234

Yahya Akıl 0000-0002-7497-6458

Cem Haydaroglu 0000-0003-0830-5530

Heybet Kılıç 0000-0002-6119-0886

Erken Görünüm Tarihi 26 Mart 2025
Yayımlanma Tarihi 26 Mart 2025
Gönderilme Tarihi 11 Aralık 2024
Kabul Tarihi 12 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 1

Kaynak Göster

APA Barlaz, F., Akıl, Y., Haydaroglu, C., Kılıç, H. (2025). Renewable Energy and Hydrogen Storage System Analysis for Carbon Neutral Campuses with HOMER. Türk Doğa Ve Fen Dergisi, 14(1), 136-145. https://doi.org/10.46810/tdfd.1599440
AMA Barlaz F, Akıl Y, Haydaroglu C, Kılıç H. Renewable Energy and Hydrogen Storage System Analysis for Carbon Neutral Campuses with HOMER. TDFD. Mart 2025;14(1):136-145. doi:10.46810/tdfd.1599440
Chicago Barlaz, Faruk, Yahya Akıl, Cem Haydaroglu, ve Heybet Kılıç. “Renewable Energy and Hydrogen Storage System Analysis for Carbon Neutral Campuses With HOMER”. Türk Doğa Ve Fen Dergisi 14, sy. 1 (Mart 2025): 136-45. https://doi.org/10.46810/tdfd.1599440.
EndNote Barlaz F, Akıl Y, Haydaroglu C, Kılıç H (01 Mart 2025) Renewable Energy and Hydrogen Storage System Analysis for Carbon Neutral Campuses with HOMER. Türk Doğa ve Fen Dergisi 14 1 136–145.
IEEE F. Barlaz, Y. Akıl, C. Haydaroglu, ve H. Kılıç, “Renewable Energy and Hydrogen Storage System Analysis for Carbon Neutral Campuses with HOMER”, TDFD, c. 14, sy. 1, ss. 136–145, 2025, doi: 10.46810/tdfd.1599440.
ISNAD Barlaz, Faruk vd. “Renewable Energy and Hydrogen Storage System Analysis for Carbon Neutral Campuses With HOMER”. Türk Doğa ve Fen Dergisi 14/1 (Mart 2025), 136-145. https://doi.org/10.46810/tdfd.1599440.
JAMA Barlaz F, Akıl Y, Haydaroglu C, Kılıç H. Renewable Energy and Hydrogen Storage System Analysis for Carbon Neutral Campuses with HOMER. TDFD. 2025;14:136–145.
MLA Barlaz, Faruk vd. “Renewable Energy and Hydrogen Storage System Analysis for Carbon Neutral Campuses With HOMER”. Türk Doğa Ve Fen Dergisi, c. 14, sy. 1, 2025, ss. 136-45, doi:10.46810/tdfd.1599440.
Vancouver Barlaz F, Akıl Y, Haydaroglu C, Kılıç H. Renewable Energy and Hydrogen Storage System Analysis for Carbon Neutral Campuses with HOMER. TDFD. 2025;14(1):136-45.