Araştırma Makalesi
BibTex RIS Kaynak Göster

Comparison of One Dimensional Dynamic Analysis and Microtremor Measurement Results

Yıl 2019, Cilt: 30 Sayı: 5, 9459 - 9481, 01.09.2019
https://doi.org/10.18400/tekderg.399710

Öz

The deformation level of the surface soil layer
due to strong ground motion has a considerable effect in soil-structure
interaction problems. The shear strain values of the near surface soil deposits
which are calculated by one dimensional (1D) seismic site response analyses can
also be estimated by incorporating the results obtained from
Horizontal-to-Vertical Spectral Ratio (HVSR) analysis of microtremor data and peak
horizontal acceleration value of design ground motion. In this study, the
seismic behaviour of soil layers at a site located in the vicinity of North
Anatolian Fault were estimated by both 1D  equivalent linear seismic site response
analyses under 14 different rock outcrop motion records and analyses of ground
ambient noise-microtremor measurement data. A correlation is proposed for
elastic and elasto-plastic deformation levels of surface soil layers in order
to estimate the value of shear strain due to strong ground motion

Kaynakça

  • [1] Saita, J., Nakamura, Y. and Sato, T., Liquefaction caused by the 2011 off the Pacific Coast of Tohoku Earthquake and the Result of the Prior Microtremor Measurement, 15th World Conf. on Earthquake Engineering, Lisboa, Portugal, 2012.
  • [2] Nakamura, Y., On the H/V Spectrum, The 14th World Conference on Earthquake Engineering in Beijing, China, 2008.
  • [3] İyisan, R., Zeminlerde Kayma Dalgası Hızı ile Penetrasyon Deney Sonuçları Arasındaki Bağıntılar, İMO Teknik Dergi, Cilt 7, Sayı 2, ss.1187-1199, 1996.
  • [4] Leyton, F., Montalva, G. and Ramirez P., Towards a Seismic Microzonation of Concepcion Urban area based on Microtremors, Surface Geology and Damage observed after the Maule 2010 earthquake. First Results, 4th IASPEI/IAEE International Symposium: Effects of Surface Geology on Seismic Motion, University of California, Santa Barbara, 2011.
  • [5] Burjanek, J., Gassner-Stamm, G., Poggi, V. and Fah D., Estimation of Local Site Effects in the Upper Valais (Switzerland), 4th IASPEI/IAEE International Symposium: Effects of Surface Geology on Seismic Motion,, University of California, Santa Barbara, 2011.
  • [6] Grutas, R. and Yamanaka, H., Deep Sedimentary Layers in Metro Manila, Philippines Estimated with the Joint Inversion of Receiver Function and Surface Wave Dispersion, 4th IASPEI/IAEE International Symposium: Effects of Surface Geology on Seismic Motion, University of California, Santa Barbara, 2011.
  • [7] Okada, H., Microtremor Survey Method: SEG Geophysical Monograph Series No. 12, (translated by Koya Suto), Society of Exploration Geophysicists, 2003.
  • [8] Karagoz O., Chimoto, K., Citak, S., Ozel, O., Yamanaka, H., Hatayama, K., Estimation of shallow S-wave velocity structure and site response characteristics by microtremor array measurements in Tekirdag region, NW Turkey, Earth, Planets and Space, 67:176, 2015.
  • [9] İyisan, R., Haşal, M.E., Çekmeceli, M., Bayın, A., Mikrotremor Ölçümlerine Dayalı Bir Mikrobölgeleme Örneği, 5.Geoteknik Sempozyumu, Çukurova Üniversitesi, Adana, 2013.
  • [10] Mokhberi, M., Tadayon, A. and Rahnema, H., Using the H/V Spectral Ratio of Microtremor for Identification of the Vulnerability of Buildings, Based on Dynamic Site Characteristics of the Shiraz City, 15th World Conf. on Earthquake Engineering, Lisboa, Portugal, 2012.
  • [11] Okada, H., Theory of Efficient Array Observations of Microtremors with Special Reference to the SPAC Method, Explore Geophys., vol. 37, 73-85, 2006.
  • [12] Hashash, Y.M.A., Musgrove, M.I., Harmon, J.A., Groholski, D.R., Phillips, C. and Park, D., DEEPSOIL 6.1, User Manual, 2016.
  • [13] Vucetic, M. and Dobry, R., Effect of Soil Plasticity on Cyclic Response, Journal of Geotechnical Engineering, 117:1, 87-107, 1991.
  • [14] Seed, H.B. and Idriss, I.M., Soil Moduli and Damping Factors for Dynamic Response Analyses, Report EERC, Berkeley CA, USA, University of California, 1970.
  • [15] Türkiye Cumhuriyeti Bayındırlık ve İskan Bakalığı Afet İşleri Genel Müdürlüğü Deprem Araştırma Dairesi Başkanlığı, Türkiye Deprem Bölgeleri Haritası, İndeks Yerleşim Birimleri ve Deprem Bölgeleri Raporu, Ankara, 1996.
  • [16] Krinitszky, E.L. and Chang, F.K., State-of-the-art for assessing earthquake hazards in the United States: Specifying peak motions for design earthquakes, Miscellaneous Paper S-73-1, Report 7, U.S Army Corps of Engineers Waterways Experiment Station, Vicksburg, Mississippi, 1979.
  • [17] Vanmarcke, E.H.,State of the art for assessing earthquake hazards in the United States: Representation of earthquake ground motion: Scaled accelerograms and equivalent response spectra, Miscellaneous Paper S-73-1, Report 14, U.S Army Corps of Engineers Waterways Experiment Station, Vicksburg, Mississippi, 1979.
  • [18] Von Thun, J.L., Rochim, L.H., Scott, G.A and Wilson, J.A., Earthquake ground motions for design and analysis of dams, Earthq. Engineering and Soil Dynamics II, Recent Advance in Ground-Motion Evaluation, Geotec. Special Publication 20, ASCE, New York, 463-481, 1988.
  • [19] Nuttli, O.W., The relation of sustained maximum ground acceleration and velocity to earthquake intensity and magnitude, Miscellaneous Paper S-71-1, Report 16, U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, Mississippi, 1979.
  • [20] Rathje, E.M., Abrahamson, N.A. and Bray J.D., Simplified frequency content estimates of earthquake ground motions, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124, No. 2, pp. 150-159, 1998.
  • [21] Ishihara, K., Soil Behaviour in Earthquake Geotechnics, Oxford Engineering Science Series, Oxford University Press, U.K., 1996.

Bir Boyutlu Dinamik Analiz ve Mikrotremor Ölçüm Sonuçlarının Karşılaştırılması

Yıl 2019, Cilt: 30 Sayı: 5, 9459 - 9481, 01.09.2019
https://doi.org/10.18400/tekderg.399710

Öz

Depremler sırasında zemin tabakalarında oluşan deformasyon
seviyeleri, yapı-zemin etkileşiminde önemli rol oynamaktadır.
Kuvvetli yer hareketi kayıtları kullanılarak
yapılan bir boyutlu (1D) dinamik analizlerle yüzeye yakın zemin tabakaları için
hesaplanan kayma şekil değiştirmeleri, küçük genlikli titreşimler-mikrotremor verisi
analiz sonuçlarının tasarım yer hareketine ait en büyük yatay ivme değeriyle birlikte
değerlendirilmesiyle de tahmin edilebilmektedir.
Bu
çalışmada, Kuzey Anadolu Fay Hattına yakın bir bölgede zemin tabakalarının deprem
hareketi karşısındaki davranışı hem 14 farklı ana
kaya ivme kaydı kullanılarak yapılan 1D eşdeğer lineer dinamik analizlerle hem de mikrotremor ölçümlerinin
analizi yardımıyla elde edilmiştir. Verilerin değerlendirilmesi sonucunda;
kuvvetli yer hareketi sırasında yüzeye yakın
zemin tabakalarında oluşacak kayma
birim şekil değiştirmesinin belirlenebilmesi amacıyla, elastik ve elasto-plastik
deformasyon seviyelerini kapsayan
bir bağıntı önerilmiştir.

Kaynakça

  • [1] Saita, J., Nakamura, Y. and Sato, T., Liquefaction caused by the 2011 off the Pacific Coast of Tohoku Earthquake and the Result of the Prior Microtremor Measurement, 15th World Conf. on Earthquake Engineering, Lisboa, Portugal, 2012.
  • [2] Nakamura, Y., On the H/V Spectrum, The 14th World Conference on Earthquake Engineering in Beijing, China, 2008.
  • [3] İyisan, R., Zeminlerde Kayma Dalgası Hızı ile Penetrasyon Deney Sonuçları Arasındaki Bağıntılar, İMO Teknik Dergi, Cilt 7, Sayı 2, ss.1187-1199, 1996.
  • [4] Leyton, F., Montalva, G. and Ramirez P., Towards a Seismic Microzonation of Concepcion Urban area based on Microtremors, Surface Geology and Damage observed after the Maule 2010 earthquake. First Results, 4th IASPEI/IAEE International Symposium: Effects of Surface Geology on Seismic Motion, University of California, Santa Barbara, 2011.
  • [5] Burjanek, J., Gassner-Stamm, G., Poggi, V. and Fah D., Estimation of Local Site Effects in the Upper Valais (Switzerland), 4th IASPEI/IAEE International Symposium: Effects of Surface Geology on Seismic Motion,, University of California, Santa Barbara, 2011.
  • [6] Grutas, R. and Yamanaka, H., Deep Sedimentary Layers in Metro Manila, Philippines Estimated with the Joint Inversion of Receiver Function and Surface Wave Dispersion, 4th IASPEI/IAEE International Symposium: Effects of Surface Geology on Seismic Motion, University of California, Santa Barbara, 2011.
  • [7] Okada, H., Microtremor Survey Method: SEG Geophysical Monograph Series No. 12, (translated by Koya Suto), Society of Exploration Geophysicists, 2003.
  • [8] Karagoz O., Chimoto, K., Citak, S., Ozel, O., Yamanaka, H., Hatayama, K., Estimation of shallow S-wave velocity structure and site response characteristics by microtremor array measurements in Tekirdag region, NW Turkey, Earth, Planets and Space, 67:176, 2015.
  • [9] İyisan, R., Haşal, M.E., Çekmeceli, M., Bayın, A., Mikrotremor Ölçümlerine Dayalı Bir Mikrobölgeleme Örneği, 5.Geoteknik Sempozyumu, Çukurova Üniversitesi, Adana, 2013.
  • [10] Mokhberi, M., Tadayon, A. and Rahnema, H., Using the H/V Spectral Ratio of Microtremor for Identification of the Vulnerability of Buildings, Based on Dynamic Site Characteristics of the Shiraz City, 15th World Conf. on Earthquake Engineering, Lisboa, Portugal, 2012.
  • [11] Okada, H., Theory of Efficient Array Observations of Microtremors with Special Reference to the SPAC Method, Explore Geophys., vol. 37, 73-85, 2006.
  • [12] Hashash, Y.M.A., Musgrove, M.I., Harmon, J.A., Groholski, D.R., Phillips, C. and Park, D., DEEPSOIL 6.1, User Manual, 2016.
  • [13] Vucetic, M. and Dobry, R., Effect of Soil Plasticity on Cyclic Response, Journal of Geotechnical Engineering, 117:1, 87-107, 1991.
  • [14] Seed, H.B. and Idriss, I.M., Soil Moduli and Damping Factors for Dynamic Response Analyses, Report EERC, Berkeley CA, USA, University of California, 1970.
  • [15] Türkiye Cumhuriyeti Bayındırlık ve İskan Bakalığı Afet İşleri Genel Müdürlüğü Deprem Araştırma Dairesi Başkanlığı, Türkiye Deprem Bölgeleri Haritası, İndeks Yerleşim Birimleri ve Deprem Bölgeleri Raporu, Ankara, 1996.
  • [16] Krinitszky, E.L. and Chang, F.K., State-of-the-art for assessing earthquake hazards in the United States: Specifying peak motions for design earthquakes, Miscellaneous Paper S-73-1, Report 7, U.S Army Corps of Engineers Waterways Experiment Station, Vicksburg, Mississippi, 1979.
  • [17] Vanmarcke, E.H.,State of the art for assessing earthquake hazards in the United States: Representation of earthquake ground motion: Scaled accelerograms and equivalent response spectra, Miscellaneous Paper S-73-1, Report 14, U.S Army Corps of Engineers Waterways Experiment Station, Vicksburg, Mississippi, 1979.
  • [18] Von Thun, J.L., Rochim, L.H., Scott, G.A and Wilson, J.A., Earthquake ground motions for design and analysis of dams, Earthq. Engineering and Soil Dynamics II, Recent Advance in Ground-Motion Evaluation, Geotec. Special Publication 20, ASCE, New York, 463-481, 1988.
  • [19] Nuttli, O.W., The relation of sustained maximum ground acceleration and velocity to earthquake intensity and magnitude, Miscellaneous Paper S-71-1, Report 16, U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, Mississippi, 1979.
  • [20] Rathje, E.M., Abrahamson, N.A. and Bray J.D., Simplified frequency content estimates of earthquake ground motions, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124, No. 2, pp. 150-159, 1998.
  • [21] Ishihara, K., Soil Behaviour in Earthquake Geotechnics, Oxford Engineering Science Series, Oxford University Press, U.K., 1996.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği
Bölüm Makale
Yazarlar

Ozan Subaşi 0000-0001-6931-0590

Murat Emre Haşal Bu kişi benim 0000-0003-3466-7885

Bilal Özaslan Bu kişi benim 0000-0001-7951-1759

Recep İyisan 0000-0002-0887-9983

Hiroaki Yamanaka Bu kişi benim 0000-0002-5937-4707

Kosuke Chımoto Bu kişi benim 0000-0003-0117-5868

Yayımlanma Tarihi 1 Eylül 2019
Gönderilme Tarihi 28 Şubat 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 30 Sayı: 5

Kaynak Göster

APA Subaşi, O., Haşal, M. E., Özaslan, B., İyisan, R., vd. (2019). Bir Boyutlu Dinamik Analiz ve Mikrotremor Ölçüm Sonuçlarının Karşılaştırılması. Teknik Dergi, 30(5), 9459-9481. https://doi.org/10.18400/tekderg.399710
AMA Subaşi O, Haşal ME, Özaslan B, İyisan R, Yamanaka H, Chımoto K. Bir Boyutlu Dinamik Analiz ve Mikrotremor Ölçüm Sonuçlarının Karşılaştırılması. Teknik Dergi. Eylül 2019;30(5):9459-9481. doi:10.18400/tekderg.399710
Chicago Subaşi, Ozan, Murat Emre Haşal, Bilal Özaslan, Recep İyisan, Hiroaki Yamanaka, ve Kosuke Chımoto. “Bir Boyutlu Dinamik Analiz Ve Mikrotremor Ölçüm Sonuçlarının Karşılaştırılması”. Teknik Dergi 30, sy. 5 (Eylül 2019): 9459-81. https://doi.org/10.18400/tekderg.399710.
EndNote Subaşi O, Haşal ME, Özaslan B, İyisan R, Yamanaka H, Chımoto K (01 Eylül 2019) Bir Boyutlu Dinamik Analiz ve Mikrotremor Ölçüm Sonuçlarının Karşılaştırılması. Teknik Dergi 30 5 9459–9481.
IEEE O. Subaşi, M. E. Haşal, B. Özaslan, R. İyisan, H. Yamanaka, ve K. Chımoto, “Bir Boyutlu Dinamik Analiz ve Mikrotremor Ölçüm Sonuçlarının Karşılaştırılması”, Teknik Dergi, c. 30, sy. 5, ss. 9459–9481, 2019, doi: 10.18400/tekderg.399710.
ISNAD Subaşi, Ozan vd. “Bir Boyutlu Dinamik Analiz Ve Mikrotremor Ölçüm Sonuçlarının Karşılaştırılması”. Teknik Dergi 30/5 (Eylül 2019), 9459-9481. https://doi.org/10.18400/tekderg.399710.
JAMA Subaşi O, Haşal ME, Özaslan B, İyisan R, Yamanaka H, Chımoto K. Bir Boyutlu Dinamik Analiz ve Mikrotremor Ölçüm Sonuçlarının Karşılaştırılması. Teknik Dergi. 2019;30:9459–9481.
MLA Subaşi, Ozan vd. “Bir Boyutlu Dinamik Analiz Ve Mikrotremor Ölçüm Sonuçlarının Karşılaştırılması”. Teknik Dergi, c. 30, sy. 5, 2019, ss. 9459-81, doi:10.18400/tekderg.399710.
Vancouver Subaşi O, Haşal ME, Özaslan B, İyisan R, Yamanaka H, Chımoto K. Bir Boyutlu Dinamik Analiz ve Mikrotremor Ölçüm Sonuçlarının Karşılaştırılması. Teknik Dergi. 2019;30(5):9459-81.