Araştırma Makalesi
BibTex RIS Kaynak Göster

Challenges and Benefits of the Use of AASHTOWare for 3 Climatic Regions in Turkey

Yıl 2022, Cilt: 33 Sayı: 5, 12473 - 12500, 01.09.2022
https://doi.org/10.18400/tekderg.793889

Öz

The economic growth in developing countries triggers investments in highway networks. Thus, this requires a re-evaluation of existing design practices, which are mostly empirical. An alternative is the relatively recently developed Mechanistic-Empirical (M-E) design method. It has major data challenges and must be identified before a major switch. In this study, three different climatic regions for Turkey were analyzed optimizing 162 design combinations. Results showed that climate, traffic, and reliability parameters extremely affect the performance of the pavement. As in the current practice of Turkey, climate and material effects are not currently considered; these should be further studied considering the local calibration steps.

Teşekkür

Authors thanks to “Turkish Cement Manufacturers’ Association (TCMA)” for their support in the recruitment process of AASHTOWare Pavement M-E Design software (Version 2.2) license.

Kaynakça

  • OECD, Fostering Investment in Infrastructure Lessons learned from OECD Investment Policy Reviews, 2015.
  • AASHTO, AASHTO Guide for Design of Pavement Structures”, American Association of State Highway and Transportation Officials, Washington, D.C. U.S.A., ISBN-10: 1-56051-055-2, 640 pp, 1993.
  • NCHRP, Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, National Cooperative Highway Research Program, NCHRP Project 1-37A Report, National Research Council. Washington, D.C., 2004.
  • Rahman, M. M., Gassman, S. L., Data collection experience for preliminary calibration of the AASHTO pavement design guide for flexible pavements in South Carolina, International Journal of Pavement Research and Technology, 11(5), 445-457, 2018. https://doi.org/10.1016/j.ijprt.2017.11.009
  • NCHRP, Recommended Practice for Local Calibration of the M-E Pavement Design Guide, National Cooperative Highway Research Program, ARA Inc. Texas, 2007.
  • Caliendo, C., Local calibration and implementation of the mechanistic-empirical pavement design guide for flexible pavement design, Journal of Transportation Engineering, 138(3), 348-360, 2011. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000328
  • Zofka, A., Urbanik, A., Maliszewski, M., Bankowski, W., Sybilski, D., Site specific traffic inputs for mechanistic-empirical pavement design guide in Poland, (No. 14-4534), 2014.
  • Haponiuk, B., Zbiciak, A., Mechanistic-empirical asphalt pavement design considering the effect of seasonal temperature variations, Archives of Civil Engineering, 62(4), 35-50, 2016. https://doi.org/10.1515/ace-2015-0096
  • Plescan, E., Plescan, C., Implementation of mechanistic empirical pavement design guide ME-PDG in Romania, Bull. Transilvania Univ. Braşov, 7(56), 323-329, 2014.
  • Masad, E., Kassem, E., Little, D., Characterization of asphalt pavement materials in the State of Qatar: A case study, Road Materials and Pavement Design, 12(4), 739-765, 2011. https://doi.org/10.1080/14680629.2011.9713893
  • Sadek, H. A., Masad, E. A., Sirin, O., Al-Khalid, H., Sadeq, M. A., Little, D., Implementation of mechanistic-empirical pavement analysis in the State of Qatar, International Journal of Pavement Engineering, 15(6), 495-511, 2014. https://doi.org/10.1080/10298436.2013.837164
  • Aguib, A., Flexible pavement design AASHTO 1993 versus mechanistic-empirical pavement design. MSc thesis, The American University in Cairo School of Sciences and Engineering Construction and Architectural Engineering, 2014. Available at: http://dar.aucegypt.edu/handle/10526/3806
  • Aguib, A. A., Khedr, S., The mechanistic-empirical pavement design: An Egyptian perspective, In: Functional Pavement Design, CRC Press, 2016, pp. 933-942. https://doi.org/10.1201/9781315643274-102
  • Khattab, A. M., El-Badawy, S. M., Elmwafi, M., Evaluation of Witczak E* predictive models for the implementation of AASHTOWare-Pavement ME Design in the Kingdom of Saudi Arabia, Construction and Building Materials, 64, 360-369, 2014. https://doi.org/10.1016/j.conbuildmat.2014.04.066
  • Shakhan, M. R., Topal, A., Sengoz, B., Data Collection for Implementation of the MechanisticEmpirical Pavement Design Guide (MEPDG) in Izmir, Turkey, Teknik Dergi, 2021. https://dx.doi.org/10.18400/tekderg.651399
  • Ozturk, H. I., Tan, E. B., Sengün, E., Yaman, I. O., Comparison of jointed unreinforced rigid pavement systems designed with mechanistic-empirical (ME) method for different traffic, soil, material and climatic conditions, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 2018. https://doi.org/10.17341/gazimmfd.416536
  • Kim, D., Nantung, T., Siddiki, N. Z., Kim, J. R., Implementation of new mechanistic-empirical design for subgrade materials: Indiana's experience, No. 07-0463, 2007.
  • Hasan, M. A., Tarefder, R. A., Development of temperature zone map for mechanistic-empirical (M-E) pavement design, International Journal of Pavement Research and Technology, 11(1), 99-111, 2018. https://doi.org/10.1016/j.ijprt.2017.09.012
  • FHWA, Geotechnical Aspects of Pavements Reference Manual, Federal Highway Administration, 2019. https://www.fhwa.dot.gov/engineering/geotech/pubs/05037/ac.cfm Accessed on 4 November 2019
  • Azadi, M., Nasimifar, S. M., Pouranian, M. R., Determination of local fatigue model calibration used in MEPDG for Iran’s dry-no freeze region, Arabian Journal for Science and Engineering, 38(5), 1031-1039, 2013. https://doi.org/10.1007/s13369-012-0340-0
  • Li, Q. J., Wang, K. C., Yang, G., Zhan, J. Y., Qiu, Y., Data needs and implementation of the Pavement ME Design, Transportmetrica A: Transport Science, 1-30, 2018. https://doi.org/10.1080/23249935.2018.1504254
  • Rao, K. V., Mathew, T., Flexible Pavement Design, Introduction to Transportation Engineering Lecture Notes, 2007.
  • AASHTO, Mechanistic-empirical pavement design guide: A manual of practice, American Association of State Highway and Transportation Officials, 2008a.
  • Carvalho, R., Schwartz, C., Comparisons of flexible pavement designs: AASHTO empirical versus NCHRP Project 1-37A mechanistic-empirical, Journal of the Transportation Research Board, (1947), 167-174, 2006. https://doi.org/10.1177/0361198106194700116
  • Li, Q., Mills, L., McNeil, S., Attoh-Okine, N., Exploring the impact of climate change on pavement performance and design, Presented at the Transportation Research Board 91st Annual Meeting, 2012.
  • Elshaeb, M. A., El-Badawy, S. M., Shawaly, E. S. A., Development and impact of the Egyptian climatic conditions on flexible pavement performance, American Journal of Civil Engineering and Architecture, 2(3), 115-121, 2014. https://doi.org/10.12691/ajcea-2-3-4
  • AASHTO, Mechanistic-Empirical Pavement Design Guide, AASHTO Designation: MEPDG-1, American Association of State Highway and Transportation Officials, Washington, D.C, 2008b.
  • Elshaeb, M. A., El-Badawy, S. M., Shawaly, E. S. A., Development and impact of the Egyptian climatic conditions on flexible pavement performance, American Journal of Civil Engineering and Architecture, 2(3), 115-121, 2014. https://doi.org/10.12691/ajcea-2-3-4
  • Shafiee, M. H., Hashemian, L., Rostami, A., Bayat, A., Tabatabaee, N., Field measurement and modeling of vertical and longitudinal strains from falling weight deflectometer testing, Journal of Transportation Engineering, Part B: Pavements, 144(1), 2017. https://doi.org/10.1061/JPEODX.0000022
  • Jannat, G. E., Database Development for Ontario's Local Calibration of Mechanistic–Empirical Pavement Design Guide (MEPDG) Distress Models, MSc thesis, Ryerson University, 2012. Available at: https://digital.library.ryerson.ca/islandora/object/RULA%3A1461
  • Hossain, N., Singh, D., Zaman, M., Rassel, S. S., Local calibration of MEPDG rut models: Oklahoma’s experience from an instrumented pavement section. Analytical Methods in Petroleum Upstream Applications, 135, 2015. https://doi.org/10.1201/b17435-20
  • Pereira, P., Pais, J., Main flexible pavement and mix design methods in Europe and challenges for the development of a European method, Journal of Traffic and Transportation Engineering (English Edition), 4(4), 316-346, 2017. https://doi.org/10.1016/j.jtte.2017.06.001
  • Montuschi, A., Dondi, G., Pettinari, A. R. M., Flexible pavement design using Mechanistic-Empirical methods: the Californian approach, MSc thesis, Department of Civil, Chemical, Environmental and Material Engineering, Alma Mater Studiorum University of Bologna, 2012. Available at: https://amslaurea.unibo.it/4914/1/tesi_file_unico.pdf
  • Aflaki, S. Tabatabaee, N., Proposals for modification of Iranian bitumen to meet the climatic requirements of Iran, Construction and Building Materials, 23(6), 2141-2150, 2009. https://doi.org/10.1016/j.conbuildmat.2008.12.014
  • Saglik, A., Orhan, F., Gungor, A. G., BSK Kaplamalı Yollar İçin Bitüm Sınıfı Seçim Haritaları (Bitumen Class Selection Maps for BSK Coated Roads), General Directorate of Highways, 2012. Available at: http://www.kgm.gov.tr/
  • Dezotepe, G., Ksaibati, K., The Effect of Environmental factors on the implementation of the Mechanistic-Empirical Pavement Design Guide, Wyoming Technology Transfer Center, 2011.
  • Turkish State Meteorological Service (TSMS), Weather Statistic for 1950-2015 Period in City: Normal and Extreme Recordings, 2017. Retrieved on Augustus 15, 2017, Available at: the https://www.mgm.gov.tr/
  • GDH, Trafik ve Ulaşım Bilgileri (Traffic and Transportation Information), General Directorate of Highways, 2019. Available at: http://www.kgm.gov.tr/
  • GDH, Karayolları Esnek Üstyapılar Projelendirme Rehberi (Flexible Pavement Design Guide for Highways), General Directorate of Highways, Ankara, 93, 7, 2008.
  • Kottek M., Grieser J., Beck C., Rudolf B., Rubel F., World Map of the Köppen-Geiger Climate Classification Updated, Meteorol Zeitschrift, 15:259–63, 2006.
  • Mehta, Y. A., Sauber, R. W., Owad, J., Krause, J., Lessons learned during implementation of mechanistic-empirical pavement design guide, No. 08-1670, 2008.
  • Mubaraki, M., Study the relationship between pavement surface distress and roughness data, In MATEC Web of Conferences (Vol. 81, p. 02012), EDP Sciences, 2016.
  • Lin, J. D., Yau, J. T., Hsiao, L. H., Correlation analysis between international roughness index (IRI) and pavement distress by neural network, In 82nd Annual Meeting of the Transportation Research Board (pp. 12-16), 2003.
  • KGM 2020 Birim Fiyatları (Item Numbers of GDH for 2020), 2021, Retrieved on April 01, 2021, Available at: https://www.birimfiyat.net/

Challenges and Benefits of the Use of AASHTOWare for 3 Climatic Regions in Turkey

Yıl 2022, Cilt: 33 Sayı: 5, 12473 - 12500, 01.09.2022
https://doi.org/10.18400/tekderg.793889

Öz

The economic growth in developing countries triggers investments in highway networks. Thus, this requires a re-evaluation of existing design practices, which are mostly empirical. An alternative is the relatively recently developed Mechanistic-Empirical (M-E) design method. It has major data challenges and must be identified before a major switch. In this study, three different climatic regions for Turkey were analyzed optimizing 162 design combinations. Results showed that climate, traffic, and reliability parameters extremely affect the performance of the pavement. As in the current practice of Turkey, climate and material effects are not currently considered; these should be further studied considering the local calibration steps.

Kaynakça

  • OECD, Fostering Investment in Infrastructure Lessons learned from OECD Investment Policy Reviews, 2015.
  • AASHTO, AASHTO Guide for Design of Pavement Structures”, American Association of State Highway and Transportation Officials, Washington, D.C. U.S.A., ISBN-10: 1-56051-055-2, 640 pp, 1993.
  • NCHRP, Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, National Cooperative Highway Research Program, NCHRP Project 1-37A Report, National Research Council. Washington, D.C., 2004.
  • Rahman, M. M., Gassman, S. L., Data collection experience for preliminary calibration of the AASHTO pavement design guide for flexible pavements in South Carolina, International Journal of Pavement Research and Technology, 11(5), 445-457, 2018. https://doi.org/10.1016/j.ijprt.2017.11.009
  • NCHRP, Recommended Practice for Local Calibration of the M-E Pavement Design Guide, National Cooperative Highway Research Program, ARA Inc. Texas, 2007.
  • Caliendo, C., Local calibration and implementation of the mechanistic-empirical pavement design guide for flexible pavement design, Journal of Transportation Engineering, 138(3), 348-360, 2011. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000328
  • Zofka, A., Urbanik, A., Maliszewski, M., Bankowski, W., Sybilski, D., Site specific traffic inputs for mechanistic-empirical pavement design guide in Poland, (No. 14-4534), 2014.
  • Haponiuk, B., Zbiciak, A., Mechanistic-empirical asphalt pavement design considering the effect of seasonal temperature variations, Archives of Civil Engineering, 62(4), 35-50, 2016. https://doi.org/10.1515/ace-2015-0096
  • Plescan, E., Plescan, C., Implementation of mechanistic empirical pavement design guide ME-PDG in Romania, Bull. Transilvania Univ. Braşov, 7(56), 323-329, 2014.
  • Masad, E., Kassem, E., Little, D., Characterization of asphalt pavement materials in the State of Qatar: A case study, Road Materials and Pavement Design, 12(4), 739-765, 2011. https://doi.org/10.1080/14680629.2011.9713893
  • Sadek, H. A., Masad, E. A., Sirin, O., Al-Khalid, H., Sadeq, M. A., Little, D., Implementation of mechanistic-empirical pavement analysis in the State of Qatar, International Journal of Pavement Engineering, 15(6), 495-511, 2014. https://doi.org/10.1080/10298436.2013.837164
  • Aguib, A., Flexible pavement design AASHTO 1993 versus mechanistic-empirical pavement design. MSc thesis, The American University in Cairo School of Sciences and Engineering Construction and Architectural Engineering, 2014. Available at: http://dar.aucegypt.edu/handle/10526/3806
  • Aguib, A. A., Khedr, S., The mechanistic-empirical pavement design: An Egyptian perspective, In: Functional Pavement Design, CRC Press, 2016, pp. 933-942. https://doi.org/10.1201/9781315643274-102
  • Khattab, A. M., El-Badawy, S. M., Elmwafi, M., Evaluation of Witczak E* predictive models for the implementation of AASHTOWare-Pavement ME Design in the Kingdom of Saudi Arabia, Construction and Building Materials, 64, 360-369, 2014. https://doi.org/10.1016/j.conbuildmat.2014.04.066
  • Shakhan, M. R., Topal, A., Sengoz, B., Data Collection for Implementation of the MechanisticEmpirical Pavement Design Guide (MEPDG) in Izmir, Turkey, Teknik Dergi, 2021. https://dx.doi.org/10.18400/tekderg.651399
  • Ozturk, H. I., Tan, E. B., Sengün, E., Yaman, I. O., Comparison of jointed unreinforced rigid pavement systems designed with mechanistic-empirical (ME) method for different traffic, soil, material and climatic conditions, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 2018. https://doi.org/10.17341/gazimmfd.416536
  • Kim, D., Nantung, T., Siddiki, N. Z., Kim, J. R., Implementation of new mechanistic-empirical design for subgrade materials: Indiana's experience, No. 07-0463, 2007.
  • Hasan, M. A., Tarefder, R. A., Development of temperature zone map for mechanistic-empirical (M-E) pavement design, International Journal of Pavement Research and Technology, 11(1), 99-111, 2018. https://doi.org/10.1016/j.ijprt.2017.09.012
  • FHWA, Geotechnical Aspects of Pavements Reference Manual, Federal Highway Administration, 2019. https://www.fhwa.dot.gov/engineering/geotech/pubs/05037/ac.cfm Accessed on 4 November 2019
  • Azadi, M., Nasimifar, S. M., Pouranian, M. R., Determination of local fatigue model calibration used in MEPDG for Iran’s dry-no freeze region, Arabian Journal for Science and Engineering, 38(5), 1031-1039, 2013. https://doi.org/10.1007/s13369-012-0340-0
  • Li, Q. J., Wang, K. C., Yang, G., Zhan, J. Y., Qiu, Y., Data needs and implementation of the Pavement ME Design, Transportmetrica A: Transport Science, 1-30, 2018. https://doi.org/10.1080/23249935.2018.1504254
  • Rao, K. V., Mathew, T., Flexible Pavement Design, Introduction to Transportation Engineering Lecture Notes, 2007.
  • AASHTO, Mechanistic-empirical pavement design guide: A manual of practice, American Association of State Highway and Transportation Officials, 2008a.
  • Carvalho, R., Schwartz, C., Comparisons of flexible pavement designs: AASHTO empirical versus NCHRP Project 1-37A mechanistic-empirical, Journal of the Transportation Research Board, (1947), 167-174, 2006. https://doi.org/10.1177/0361198106194700116
  • Li, Q., Mills, L., McNeil, S., Attoh-Okine, N., Exploring the impact of climate change on pavement performance and design, Presented at the Transportation Research Board 91st Annual Meeting, 2012.
  • Elshaeb, M. A., El-Badawy, S. M., Shawaly, E. S. A., Development and impact of the Egyptian climatic conditions on flexible pavement performance, American Journal of Civil Engineering and Architecture, 2(3), 115-121, 2014. https://doi.org/10.12691/ajcea-2-3-4
  • AASHTO, Mechanistic-Empirical Pavement Design Guide, AASHTO Designation: MEPDG-1, American Association of State Highway and Transportation Officials, Washington, D.C, 2008b.
  • Elshaeb, M. A., El-Badawy, S. M., Shawaly, E. S. A., Development and impact of the Egyptian climatic conditions on flexible pavement performance, American Journal of Civil Engineering and Architecture, 2(3), 115-121, 2014. https://doi.org/10.12691/ajcea-2-3-4
  • Shafiee, M. H., Hashemian, L., Rostami, A., Bayat, A., Tabatabaee, N., Field measurement and modeling of vertical and longitudinal strains from falling weight deflectometer testing, Journal of Transportation Engineering, Part B: Pavements, 144(1), 2017. https://doi.org/10.1061/JPEODX.0000022
  • Jannat, G. E., Database Development for Ontario's Local Calibration of Mechanistic–Empirical Pavement Design Guide (MEPDG) Distress Models, MSc thesis, Ryerson University, 2012. Available at: https://digital.library.ryerson.ca/islandora/object/RULA%3A1461
  • Hossain, N., Singh, D., Zaman, M., Rassel, S. S., Local calibration of MEPDG rut models: Oklahoma’s experience from an instrumented pavement section. Analytical Methods in Petroleum Upstream Applications, 135, 2015. https://doi.org/10.1201/b17435-20
  • Pereira, P., Pais, J., Main flexible pavement and mix design methods in Europe and challenges for the development of a European method, Journal of Traffic and Transportation Engineering (English Edition), 4(4), 316-346, 2017. https://doi.org/10.1016/j.jtte.2017.06.001
  • Montuschi, A., Dondi, G., Pettinari, A. R. M., Flexible pavement design using Mechanistic-Empirical methods: the Californian approach, MSc thesis, Department of Civil, Chemical, Environmental and Material Engineering, Alma Mater Studiorum University of Bologna, 2012. Available at: https://amslaurea.unibo.it/4914/1/tesi_file_unico.pdf
  • Aflaki, S. Tabatabaee, N., Proposals for modification of Iranian bitumen to meet the climatic requirements of Iran, Construction and Building Materials, 23(6), 2141-2150, 2009. https://doi.org/10.1016/j.conbuildmat.2008.12.014
  • Saglik, A., Orhan, F., Gungor, A. G., BSK Kaplamalı Yollar İçin Bitüm Sınıfı Seçim Haritaları (Bitumen Class Selection Maps for BSK Coated Roads), General Directorate of Highways, 2012. Available at: http://www.kgm.gov.tr/
  • Dezotepe, G., Ksaibati, K., The Effect of Environmental factors on the implementation of the Mechanistic-Empirical Pavement Design Guide, Wyoming Technology Transfer Center, 2011.
  • Turkish State Meteorological Service (TSMS), Weather Statistic for 1950-2015 Period in City: Normal and Extreme Recordings, 2017. Retrieved on Augustus 15, 2017, Available at: the https://www.mgm.gov.tr/
  • GDH, Trafik ve Ulaşım Bilgileri (Traffic and Transportation Information), General Directorate of Highways, 2019. Available at: http://www.kgm.gov.tr/
  • GDH, Karayolları Esnek Üstyapılar Projelendirme Rehberi (Flexible Pavement Design Guide for Highways), General Directorate of Highways, Ankara, 93, 7, 2008.
  • Kottek M., Grieser J., Beck C., Rudolf B., Rubel F., World Map of the Köppen-Geiger Climate Classification Updated, Meteorol Zeitschrift, 15:259–63, 2006.
  • Mehta, Y. A., Sauber, R. W., Owad, J., Krause, J., Lessons learned during implementation of mechanistic-empirical pavement design guide, No. 08-1670, 2008.
  • Mubaraki, M., Study the relationship between pavement surface distress and roughness data, In MATEC Web of Conferences (Vol. 81, p. 02012), EDP Sciences, 2016.
  • Lin, J. D., Yau, J. T., Hsiao, L. H., Correlation analysis between international roughness index (IRI) and pavement distress by neural network, In 82nd Annual Meeting of the Transportation Research Board (pp. 12-16), 2003.
  • KGM 2020 Birim Fiyatları (Item Numbers of GDH for 2020), 2021, Retrieved on April 01, 2021, Available at: https://www.birimfiyat.net/
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnşaat Mühendisliği
Bölüm Makale
Yazarlar

Beyhan Ipekyuz 0000-0001-8088-1896

Hediye Tüydeş Yaman 0000-0003-2053-992X

Hande Işık Öztürk 0000-0003-1597-5348

Yayımlanma Tarihi 1 Eylül 2022
Gönderilme Tarihi 15 Eylül 2020
Yayımlandığı Sayı Yıl 2022 Cilt: 33 Sayı: 5

Kaynak Göster

APA Ipekyuz, B., Tüydeş Yaman, H., & Öztürk, H. I. (2022). Challenges and Benefits of the Use of AASHTOWare for 3 Climatic Regions in Turkey. Teknik Dergi, 33(5), 12473-12500. https://doi.org/10.18400/tekderg.793889
AMA Ipekyuz B, Tüydeş Yaman H, Öztürk HI. Challenges and Benefits of the Use of AASHTOWare for 3 Climatic Regions in Turkey. Teknik Dergi. Eylül 2022;33(5):12473-12500. doi:10.18400/tekderg.793889
Chicago Ipekyuz, Beyhan, Hediye Tüydeş Yaman, ve Hande Işık Öztürk. “Challenges and Benefits of the Use of AASHTOWare for 3 Climatic Regions in Turkey”. Teknik Dergi 33, sy. 5 (Eylül 2022): 12473-500. https://doi.org/10.18400/tekderg.793889.
EndNote Ipekyuz B, Tüydeş Yaman H, Öztürk HI (01 Eylül 2022) Challenges and Benefits of the Use of AASHTOWare for 3 Climatic Regions in Turkey. Teknik Dergi 33 5 12473–12500.
IEEE B. Ipekyuz, H. Tüydeş Yaman, ve H. I. Öztürk, “Challenges and Benefits of the Use of AASHTOWare for 3 Climatic Regions in Turkey”, Teknik Dergi, c. 33, sy. 5, ss. 12473–12500, 2022, doi: 10.18400/tekderg.793889.
ISNAD Ipekyuz, Beyhan vd. “Challenges and Benefits of the Use of AASHTOWare for 3 Climatic Regions in Turkey”. Teknik Dergi 33/5 (Eylül 2022), 12473-12500. https://doi.org/10.18400/tekderg.793889.
JAMA Ipekyuz B, Tüydeş Yaman H, Öztürk HI. Challenges and Benefits of the Use of AASHTOWare for 3 Climatic Regions in Turkey. Teknik Dergi. 2022;33:12473–12500.
MLA Ipekyuz, Beyhan vd. “Challenges and Benefits of the Use of AASHTOWare for 3 Climatic Regions in Turkey”. Teknik Dergi, c. 33, sy. 5, 2022, ss. 12473-00, doi:10.18400/tekderg.793889.
Vancouver Ipekyuz B, Tüydeş Yaman H, Öztürk HI. Challenges and Benefits of the Use of AASHTOWare for 3 Climatic Regions in Turkey. Teknik Dergi. 2022;33(5):12473-500.