Araştırma Makalesi
BibTex RIS Kaynak Göster

Kozmik Işın Nötron Sayacı ile Ölçülen Toprak Neminin Hidrolojik Modellerde Kullanımı

Yıl 2022, Cilt: 33 Sayı: 6, 12987 - 13012, 01.11.2022
https://doi.org/10.18400/tekderg.986949

Öz

Kozmik ışınlar yeryüzüne çarptığında ortaya çıkan nötronlar hidrojen ile temas ettiklerinde enerjilerini kaybetmektedirler. Enerjisi azalmış nötronlar sayılarak bir bölgenin toprak nemi yüksek başarı ile tespit edilebilmektedir. Bu prensip ile çalışan kozmik ışın nötron sayacı (CRNP) ülkemizde ilk olarak Niğde-Çakıt havzasında denenmiş ve elde edilen sonuçlar bu çalışmada sunulmuştur. Yaklaşık 670 metre çapında bir alan için toprak nemi bilgisini sürekli olarak sağlayabilen CRNP, yüksek mekânsal ve zamansal çözünürlükte toprak nemi verisine ihtiyaç duyan hidrolojik çalışmalar için önemli bir alternatif oluşturmaktadır. 11 Kasım 2016 ile 01 Temmuz 2019 tarihleri arasında, CRNP ile saatlik olarak düzenli veri temini yapılmış olup, elde edilen verilerin aynı bölgede bulunan zaman alanı reflektometresi (TDR) cihazıyla da çok uyumlu sonuçlar verdiği tespit edilmiştir. Biriktirmeli kavramsal bir model olan NAM modeli ile hidrolojik değişkenlerin akıma olan etkileri belirlenebilmektedir. Bu çalışmada CRNP ile elde edilen toprak nemi verileri NAM kavramsal modelinin iyileştirilmesinde kullanılmış, modelin kalibrasyonunda toprak nemi verilerinin de dikkate alınmasıyla Çakıt Havzası debi verileri için Kling-Gupta Verimlilik skoru 0,56(Kalibrasyon) ve 0,42(Doğrulama)'dan 0,81(Kalibrasyon) ve 0,64(Doğrulama)'ya yükselmiştir. Hem Çakıt Havzası hem de Darboğaz Alt Havzası için istatistiksel ölçütlerin çoğunda benzer gelişmeler kaydedilmiştir.

Destekleyen Kurum

TUBİTAK

Proje Numarası

115Y041

Kaynakça

  • G. C. Topp, J. Davis,A. P. Annan, “Electromagnetic determination of soil water content: Measurements in coaxial transmission lines”, Water resources research, 16(3), 574–582, 1980.
  • J. Huisman, S. Hubbard, J. Redman, A. Annan, “Measuring soil water content with ground penetrating radar”, Vadose zone journal, 2(4), 476– 491, 2003.
  • S. Hong & I. Shin, “A physically-based inversion algorithm for retrieving soil moisture in passive microwave remote sensing”, Journal of hydrology, 405(1-2), 24–30, 2011.
  • D. Entekhabi, S. Yueh, P. E. O’Neill, K. H. Kellogg, A. Allen, R. Bindlish, M. Brown, S. Chan, A. Colliander, W. T. Crow, vd. , “Smap handbook–soil moisture active passive: Mapping soil moisture and freeze/thaw from space”, 2014.
  • W. Gardner & D. Kirkham, “Determination of soil moisture by neutron scattering”, Soil Science, 73(5), 391–402, 1952.
  • M. Zreda, D. Desilets, T. Ferré, R. L. Scott, “Measuring soil moisture content non-invasively at intermediate spatial scale using cosmic-ray neutrons”, Geophysical research letters, 35(21), 2008.
  • D. Desilets, M. Zreda, T. Ferré, “Nature’s neutron probe: Land surface hydrology at an elusive scale with cosmic rays”, Water Resources Research, 46(11), 2010.
  • V. F. Hess, “Observations of the penetrating radiation on seven balloon flights”, Physik. Zeitschr, 13, 1084–1091, 1912.
  • S. Glasstone & M. C. Edlund, “The elements of nuclear reactor theory”, 1952.
  • H. A. Bethe, S. A. Korff, G. Placzek, “On the interpretation of neutron measurements in cosmic radiation”, Physical Review, 57(7), 573, 1940.
  • L. Hendrick & R. Edge, “Cosmic-ray neutrons near the earth”, Physical Review, 145(4), 1023, 1966.
  • M. Kodama, S. Kudo, T. Kosuge, “Application of atmospheric neutrons to soil moisture measurement”, Soil science, 140(4), 237–242, 1985.
  • G. F. Knoll, Radiation detection and measurement. John Wiley & Sons, 2010.
  • Bulut, B., YILMAZ, M. T., “Türkiye’deki 2007 ve 2013 Yılı Kuraklıklarının NOAH Hidrolojik Modeli ile İncelenmesi.” Teknik Dergi, 27(4), 7619-7634, 2016.
  • D. Desilets & M. Zreda, “Footprint diameter for a cosmic-ray soil moisture probe: Theory and monte carlo simulations”, Water Resources Research, 49(6), 3566–3575, 2013.
  • A. Hawdon, D. McJannet, J. Wallace, “Calibration and correction procedures for cosmic-ray neutron soil moisture probes located across australia”, Water Resources Research, 50(6), 5029–5043, 2014.
  • D. Desilets, M. Zreda, T. Prabu, “Extended scaling factors for in situ cosmogenic nuclides: new measurements at low latitude”, Earth and Planetary Science Letters, 246(3-4), 265–276, 2006.
  • R. Rosolem, W. Shuttleworth, M. Zreda, T. Franz, X. Zeng, S. Kurc, “The effect of atmospheric water vapor on neutron count in the cosmic-ray soil moisture observing system”, Journal of Hydrometeorology, 14(5), 1659– 1671, 2013.
  • J. A. Simpson, “The cosmic ray nucleonic component: The invention and scientific uses of the neutron monitor”, in Cosmic Rays and Earth, 11–32, Springer, 2000.
  • D. B. Pelowitz, “MCNPXTM user’s manual”, Los Alamos National Laboratory, Los Alamos, 5(369), 2005.
  • M. Zreda, W. Shuttleworth, X. Zeng, C. Zweck, D. Desilets, T. Franz, R. Rosolem, “Cosmos: the cosmic-ray soil moisture observing system”, Hydrology and Earth System Sciences, 16(11), 4079–4099, 2012.
  • T. Franz, M. Zreda, R. Rosolem, T. Ferre, “A universal calibration function for determination of soil moisture with cosmic-ray neutrons”, Hydrology and Earth System Sciences, 17(2), 453–460, 2013.
  • J. Dong, T. E. Ochsner, M. Zreda, M. H. Cosh, C. B. Zou, “Calibration and validation of the cosmos rover for surface soil moisture measurement”, Vadose zone journal, 13(4), 2014.
  • G. Demir, “Soil water content estimation from point scale to plot scale,” Orta Doğu Teknik Üniversitesi, 2018.
  • K. Dimitrova-Petrova, J. Geris, E. M. Wilkinson, R. Rosolem, L. Verrot,A. Lilly, C. Soulsby, “Opportunities and challenges in using catchment-scale storage estimates from cosmic ray neutron sensors for rainfall-runoff modelling”, Journal of Hydrology, 124-878, 2020.
  • D. Kundu, R. W. Vervoort, F. F. van Ogtrop, “The value of remotely sensedsurface soil moisture for model calibration using swat”, Hydrological Processes, 31(15), pp. 2764–2780, 2017.
  • B. Széles, J. Parajka, P. Hogan, R. Silasari, L. Pavlin, P. Strauss, G. Blöschl, “The added value of different data types for calibrating and testing a hydrologic model in a small catchment”,Water resources research, 56(10), 2020.
  • M. B. Duygu & Z. Akyürek, “Using cosmic-ray neutron probes in validatingsatellite soil moisture products and land surface models”, Water, 11(7), 1362, 2019.
  • J. E. Nash & J. V. Sutcliffe, “River flow forecasting through conceptual models part i—a discussion of principles”, Journal of hydrology, 10(3), 282–290, 1970.
  • J. S. Armstrong & F. Collopy, “Error measures for generalizing about forecasting methods: Empirical comparisons”, International journal of forecasting, 8(1), 69–80, 1992.
  • S. Sorooshian, Q. Duan, V. K. Gupta, “Calibration of rainfall-runoff models: Application of global optimization to the sacramento soil moisture accountingmodel”, Water resources research, 29(4), 1185–1194, 1993.
  • J. Devore, Probability and Statistics for Engineering and the Sciences. NelsonEducation, 2011.
  • R. E. Criss & W. E. Winston, “Do nash values have value? discussion andalternate proposals”, Hydrological Processes: An International Journal, 22(14), 2723–2725, 2008.
  • H. V. Gupta & H. Kling, “On typical range, sensitivity, and normalization of mean squared error and nash-sutcliffe efficiency type metrics”, Water Resources Research, 47(10), 2011.
  • W. H. Green & G. Ampt, “Studies on soil phyics.”, The Journal of Agricultural Science, 4(1), 1–24, 1911.
  • M. B. McPherson, “Some notes on the rational method of storm drain design”, American Society of Civil Engineers, 1969.
  • A. T. Hjelmfelt Jr, “Investigation of curve number procedure”, Journal of Hydraulic Engineering, 117(6), 725–737, 1991.
  • S. Bergström, Development and application of a conceptual runoff model for Scandinavian catchments. 1976.
  • A. D. Feldman, “Hec models for water resources system simulation: theory andexperience”, in Advances in hydroscience, 12, 297–423, Elsevier, 1981.
  • S. A. Nielsen & E. Hansen, “Numerical simulation of the rainfall-runoff process on a daily basis”, Hydrology Research, 4(3), 171–190, 1973.
  • N. Agrawal & T. Desmukh, “Rainfall runoff modeling using Mike 11 NAM – a review”, International Journal of Innovative Science, Engineering & Technology, 3(6), 659–667, 2016.
  • C. Doulgeris, P. Georgiou, D. Papadimos, D. Papamichail, “Evaluating threedifferent model setups in the Mike 11 NAM model”, 241–249, 2011.
  • C. Doulgeris, P. Georgiou, D. Papadimos, D. Papamichail, “Ecosystem approach to water resources management using the Mike 11 modeling system inthe strymonas river and lake kerkini”, Journal of environmental management, 94(1), 132–143, 2012.
  • E. K. Lafdani, A. M. Nia, A. Pahlavanravi, A. Ahmadi, M. Jajarmizadeh”,Research article daily rainfall-runoff prediction and simulation using ann, anfisand conceptual hydrological Mike11/NAM models”, Int. J. Eng. Technol, 1, 32–50, 2013.
  • M. M. Rahman, D. Arya, N. Goel, A. P. Dhamy, “Design flow and stagecomputations in the teesta river, bangladesh, using frequency analysis and Mike11 modeling”,Journal of Hydrologic Engineering, 16(2), 176–186, 2011.
  • F. T. Teshome, H. K. Bayabil, L. Thakural, F. G. Welidehanna,vd. , “Verification of the Mike11-NAM model for simulating streamflow”, Journal of Environmental Protection, 11(2), 152, 2020.
  • F. T. Teshome, H. K. Bayabil, L. Thakural, F. G. Welidehanna, vd. , “Verification of the mike11-nam model for simulating streamflow,” Journal of Environmental Protection, 11(2), 152, 2020.
  • Y. Li, S. Grimaldi, V. R. Pauwels, J. P. Walker, “Hydrologic model calibration using remotely sensed soil moisture and discharge measurements: Theimpact on predictions at gauged and ungauged locations” Journal of hydrology, 557, 897–909, 2018.
  • C. Francois, A. Quesney, C. Ottlé, “Sequential assimilation of ERS-1 SAR data into a coupled land surface–hydrological model using an extended kalmanfilter”, Journal of Hydrometeorology, 4(2), 473–487, 2003.
  • M. Köhli, M. Schrön, M. Zreda, U. Schmidt, P. Dietrich, S. Zacharias”,Footprint characteristics revised for fieldscale soil moisture monitoring with cosmic-ray neutrons”, Water Resources Research, 51(7), 5772–5790, 2015.
  • T. E. Franz, M. Zreda, T. Ferre, R. Rosolem, C. Zweck, S. Stillman, X. Zeng,W. Shuttleworth, “Measurement depth of the cosmic ray soil moisture probeaffected by hydrogen from various sources”, Water Resources Research, 48(8), 2012.
  • A. Phocaides, “Technical handbook on pressurized irrigation techniques”, FAO, Rome, 372, 2000.
  • M. T. Van Genuchten, “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils”, Soil science society of America journal, 44(5), 892–898, 1980.
  • W. Wagner, G. Lemoine, H. Rott, “A method for estimating soil moisturefrom ers scatterometer and soil data”, Remote Sensing of Environment, 70(2), 191–207, 1999.
  • R. D. Harr, “Effects of clearcutting on rain-on-snow runoff in western oregon: A new look at old studies,” Water Resources Research, 70(7), 1095–1100, 1986.

Using Soil Moisture Measured by the Cosmic Ray Neutron Probe in Hydrological Models

Yıl 2022, Cilt: 33 Sayı: 6, 12987 - 13012, 01.11.2022
https://doi.org/10.18400/tekderg.986949

Öz

Scattered neutrons which occur as a result of the collision between cosmic rays and the Earth surface, lose their energy when they come into contact with hydrogen. The soil moisture of a region can be determined with high success by counting these neutrons with reduced energy. Cosmic ray neutron probe (CRNP) works using this principle, it was first tested in Turkey at Çakıt basin and the results are presented in this study. CRNP can continuously provide soil moisture information for an area with a diameter of approximately 670 meters, thus, constitutes an important alternative for hydrological studies that require soil moisture data with high spatial and temporal resolution. Between 11 November 2016 and 01 July 2019, regular hourly data were obtained with CRNP, and it was determined that the data has very consistent results with the time domain reflectometer (TDR) located in the study area. NAM, which is a lumped conceptual model, helps determining the effects of hydrological variables on the discharge outputs. In this study, soil moisture data obtained with CRNP were used to improve the NAM conceptual model and Kling-Gupta Efficiency score for the discharge data of Çakıt Basin increased from 0.56(Calibration) and 0.42(Validation) to 0.81(Calibration) and 0.64(Validation). Similar improvements were noted for most of the statistical measures for both Çakıt Basin and Darboğaz sub-basin.

Proje Numarası

115Y041

Kaynakça

  • G. C. Topp, J. Davis,A. P. Annan, “Electromagnetic determination of soil water content: Measurements in coaxial transmission lines”, Water resources research, 16(3), 574–582, 1980.
  • J. Huisman, S. Hubbard, J. Redman, A. Annan, “Measuring soil water content with ground penetrating radar”, Vadose zone journal, 2(4), 476– 491, 2003.
  • S. Hong & I. Shin, “A physically-based inversion algorithm for retrieving soil moisture in passive microwave remote sensing”, Journal of hydrology, 405(1-2), 24–30, 2011.
  • D. Entekhabi, S. Yueh, P. E. O’Neill, K. H. Kellogg, A. Allen, R. Bindlish, M. Brown, S. Chan, A. Colliander, W. T. Crow, vd. , “Smap handbook–soil moisture active passive: Mapping soil moisture and freeze/thaw from space”, 2014.
  • W. Gardner & D. Kirkham, “Determination of soil moisture by neutron scattering”, Soil Science, 73(5), 391–402, 1952.
  • M. Zreda, D. Desilets, T. Ferré, R. L. Scott, “Measuring soil moisture content non-invasively at intermediate spatial scale using cosmic-ray neutrons”, Geophysical research letters, 35(21), 2008.
  • D. Desilets, M. Zreda, T. Ferré, “Nature’s neutron probe: Land surface hydrology at an elusive scale with cosmic rays”, Water Resources Research, 46(11), 2010.
  • V. F. Hess, “Observations of the penetrating radiation on seven balloon flights”, Physik. Zeitschr, 13, 1084–1091, 1912.
  • S. Glasstone & M. C. Edlund, “The elements of nuclear reactor theory”, 1952.
  • H. A. Bethe, S. A. Korff, G. Placzek, “On the interpretation of neutron measurements in cosmic radiation”, Physical Review, 57(7), 573, 1940.
  • L. Hendrick & R. Edge, “Cosmic-ray neutrons near the earth”, Physical Review, 145(4), 1023, 1966.
  • M. Kodama, S. Kudo, T. Kosuge, “Application of atmospheric neutrons to soil moisture measurement”, Soil science, 140(4), 237–242, 1985.
  • G. F. Knoll, Radiation detection and measurement. John Wiley & Sons, 2010.
  • Bulut, B., YILMAZ, M. T., “Türkiye’deki 2007 ve 2013 Yılı Kuraklıklarının NOAH Hidrolojik Modeli ile İncelenmesi.” Teknik Dergi, 27(4), 7619-7634, 2016.
  • D. Desilets & M. Zreda, “Footprint diameter for a cosmic-ray soil moisture probe: Theory and monte carlo simulations”, Water Resources Research, 49(6), 3566–3575, 2013.
  • A. Hawdon, D. McJannet, J. Wallace, “Calibration and correction procedures for cosmic-ray neutron soil moisture probes located across australia”, Water Resources Research, 50(6), 5029–5043, 2014.
  • D. Desilets, M. Zreda, T. Prabu, “Extended scaling factors for in situ cosmogenic nuclides: new measurements at low latitude”, Earth and Planetary Science Letters, 246(3-4), 265–276, 2006.
  • R. Rosolem, W. Shuttleworth, M. Zreda, T. Franz, X. Zeng, S. Kurc, “The effect of atmospheric water vapor on neutron count in the cosmic-ray soil moisture observing system”, Journal of Hydrometeorology, 14(5), 1659– 1671, 2013.
  • J. A. Simpson, “The cosmic ray nucleonic component: The invention and scientific uses of the neutron monitor”, in Cosmic Rays and Earth, 11–32, Springer, 2000.
  • D. B. Pelowitz, “MCNPXTM user’s manual”, Los Alamos National Laboratory, Los Alamos, 5(369), 2005.
  • M. Zreda, W. Shuttleworth, X. Zeng, C. Zweck, D. Desilets, T. Franz, R. Rosolem, “Cosmos: the cosmic-ray soil moisture observing system”, Hydrology and Earth System Sciences, 16(11), 4079–4099, 2012.
  • T. Franz, M. Zreda, R. Rosolem, T. Ferre, “A universal calibration function for determination of soil moisture with cosmic-ray neutrons”, Hydrology and Earth System Sciences, 17(2), 453–460, 2013.
  • J. Dong, T. E. Ochsner, M. Zreda, M. H. Cosh, C. B. Zou, “Calibration and validation of the cosmos rover for surface soil moisture measurement”, Vadose zone journal, 13(4), 2014.
  • G. Demir, “Soil water content estimation from point scale to plot scale,” Orta Doğu Teknik Üniversitesi, 2018.
  • K. Dimitrova-Petrova, J. Geris, E. M. Wilkinson, R. Rosolem, L. Verrot,A. Lilly, C. Soulsby, “Opportunities and challenges in using catchment-scale storage estimates from cosmic ray neutron sensors for rainfall-runoff modelling”, Journal of Hydrology, 124-878, 2020.
  • D. Kundu, R. W. Vervoort, F. F. van Ogtrop, “The value of remotely sensedsurface soil moisture for model calibration using swat”, Hydrological Processes, 31(15), pp. 2764–2780, 2017.
  • B. Széles, J. Parajka, P. Hogan, R. Silasari, L. Pavlin, P. Strauss, G. Blöschl, “The added value of different data types for calibrating and testing a hydrologic model in a small catchment”,Water resources research, 56(10), 2020.
  • M. B. Duygu & Z. Akyürek, “Using cosmic-ray neutron probes in validatingsatellite soil moisture products and land surface models”, Water, 11(7), 1362, 2019.
  • J. E. Nash & J. V. Sutcliffe, “River flow forecasting through conceptual models part i—a discussion of principles”, Journal of hydrology, 10(3), 282–290, 1970.
  • J. S. Armstrong & F. Collopy, “Error measures for generalizing about forecasting methods: Empirical comparisons”, International journal of forecasting, 8(1), 69–80, 1992.
  • S. Sorooshian, Q. Duan, V. K. Gupta, “Calibration of rainfall-runoff models: Application of global optimization to the sacramento soil moisture accountingmodel”, Water resources research, 29(4), 1185–1194, 1993.
  • J. Devore, Probability and Statistics for Engineering and the Sciences. NelsonEducation, 2011.
  • R. E. Criss & W. E. Winston, “Do nash values have value? discussion andalternate proposals”, Hydrological Processes: An International Journal, 22(14), 2723–2725, 2008.
  • H. V. Gupta & H. Kling, “On typical range, sensitivity, and normalization of mean squared error and nash-sutcliffe efficiency type metrics”, Water Resources Research, 47(10), 2011.
  • W. H. Green & G. Ampt, “Studies on soil phyics.”, The Journal of Agricultural Science, 4(1), 1–24, 1911.
  • M. B. McPherson, “Some notes on the rational method of storm drain design”, American Society of Civil Engineers, 1969.
  • A. T. Hjelmfelt Jr, “Investigation of curve number procedure”, Journal of Hydraulic Engineering, 117(6), 725–737, 1991.
  • S. Bergström, Development and application of a conceptual runoff model for Scandinavian catchments. 1976.
  • A. D. Feldman, “Hec models for water resources system simulation: theory andexperience”, in Advances in hydroscience, 12, 297–423, Elsevier, 1981.
  • S. A. Nielsen & E. Hansen, “Numerical simulation of the rainfall-runoff process on a daily basis”, Hydrology Research, 4(3), 171–190, 1973.
  • N. Agrawal & T. Desmukh, “Rainfall runoff modeling using Mike 11 NAM – a review”, International Journal of Innovative Science, Engineering & Technology, 3(6), 659–667, 2016.
  • C. Doulgeris, P. Georgiou, D. Papadimos, D. Papamichail, “Evaluating threedifferent model setups in the Mike 11 NAM model”, 241–249, 2011.
  • C. Doulgeris, P. Georgiou, D. Papadimos, D. Papamichail, “Ecosystem approach to water resources management using the Mike 11 modeling system inthe strymonas river and lake kerkini”, Journal of environmental management, 94(1), 132–143, 2012.
  • E. K. Lafdani, A. M. Nia, A. Pahlavanravi, A. Ahmadi, M. Jajarmizadeh”,Research article daily rainfall-runoff prediction and simulation using ann, anfisand conceptual hydrological Mike11/NAM models”, Int. J. Eng. Technol, 1, 32–50, 2013.
  • M. M. Rahman, D. Arya, N. Goel, A. P. Dhamy, “Design flow and stagecomputations in the teesta river, bangladesh, using frequency analysis and Mike11 modeling”,Journal of Hydrologic Engineering, 16(2), 176–186, 2011.
  • F. T. Teshome, H. K. Bayabil, L. Thakural, F. G. Welidehanna,vd. , “Verification of the Mike11-NAM model for simulating streamflow”, Journal of Environmental Protection, 11(2), 152, 2020.
  • F. T. Teshome, H. K. Bayabil, L. Thakural, F. G. Welidehanna, vd. , “Verification of the mike11-nam model for simulating streamflow,” Journal of Environmental Protection, 11(2), 152, 2020.
  • Y. Li, S. Grimaldi, V. R. Pauwels, J. P. Walker, “Hydrologic model calibration using remotely sensed soil moisture and discharge measurements: Theimpact on predictions at gauged and ungauged locations” Journal of hydrology, 557, 897–909, 2018.
  • C. Francois, A. Quesney, C. Ottlé, “Sequential assimilation of ERS-1 SAR data into a coupled land surface–hydrological model using an extended kalmanfilter”, Journal of Hydrometeorology, 4(2), 473–487, 2003.
  • M. Köhli, M. Schrön, M. Zreda, U. Schmidt, P. Dietrich, S. Zacharias”,Footprint characteristics revised for fieldscale soil moisture monitoring with cosmic-ray neutrons”, Water Resources Research, 51(7), 5772–5790, 2015.
  • T. E. Franz, M. Zreda, T. Ferre, R. Rosolem, C. Zweck, S. Stillman, X. Zeng,W. Shuttleworth, “Measurement depth of the cosmic ray soil moisture probeaffected by hydrogen from various sources”, Water Resources Research, 48(8), 2012.
  • A. Phocaides, “Technical handbook on pressurized irrigation techniques”, FAO, Rome, 372, 2000.
  • M. T. Van Genuchten, “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils”, Soil science society of America journal, 44(5), 892–898, 1980.
  • W. Wagner, G. Lemoine, H. Rott, “A method for estimating soil moisturefrom ers scatterometer and soil data”, Remote Sensing of Environment, 70(2), 191–207, 1999.
  • R. D. Harr, “Effects of clearcutting on rain-on-snow runoff in western oregon: A new look at old studies,” Water Resources Research, 70(7), 1095–1100, 1986.
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği
Bölüm Makale
Yazarlar

Mustafa Berk Duygu 0000-0002-0946-3656

Zuhal Akyürek 0000-0003-3744-2702

Proje Numarası 115Y041
Yayımlanma Tarihi 1 Kasım 2022
Gönderilme Tarihi 25 Ağustos 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 33 Sayı: 6

Kaynak Göster

APA Duygu, M. B., & Akyürek, Z. (2022). Kozmik Işın Nötron Sayacı ile Ölçülen Toprak Neminin Hidrolojik Modellerde Kullanımı. Teknik Dergi, 33(6), 12987-13012. https://doi.org/10.18400/tekderg.986949
AMA Duygu MB, Akyürek Z. Kozmik Işın Nötron Sayacı ile Ölçülen Toprak Neminin Hidrolojik Modellerde Kullanımı. Teknik Dergi. Kasım 2022;33(6):12987-13012. doi:10.18400/tekderg.986949
Chicago Duygu, Mustafa Berk, ve Zuhal Akyürek. “Kozmik Işın Nötron Sayacı Ile Ölçülen Toprak Neminin Hidrolojik Modellerde Kullanımı”. Teknik Dergi 33, sy. 6 (Kasım 2022): 12987-12. https://doi.org/10.18400/tekderg.986949.
EndNote Duygu MB, Akyürek Z (01 Kasım 2022) Kozmik Işın Nötron Sayacı ile Ölçülen Toprak Neminin Hidrolojik Modellerde Kullanımı. Teknik Dergi 33 6 12987–13012.
IEEE M. B. Duygu ve Z. Akyürek, “Kozmik Işın Nötron Sayacı ile Ölçülen Toprak Neminin Hidrolojik Modellerde Kullanımı”, Teknik Dergi, c. 33, sy. 6, ss. 12987–13012, 2022, doi: 10.18400/tekderg.986949.
ISNAD Duygu, Mustafa Berk - Akyürek, Zuhal. “Kozmik Işın Nötron Sayacı Ile Ölçülen Toprak Neminin Hidrolojik Modellerde Kullanımı”. Teknik Dergi 33/6 (Kasım 2022), 12987-13012. https://doi.org/10.18400/tekderg.986949.
JAMA Duygu MB, Akyürek Z. Kozmik Işın Nötron Sayacı ile Ölçülen Toprak Neminin Hidrolojik Modellerde Kullanımı. Teknik Dergi. 2022;33:12987–13012.
MLA Duygu, Mustafa Berk ve Zuhal Akyürek. “Kozmik Işın Nötron Sayacı Ile Ölçülen Toprak Neminin Hidrolojik Modellerde Kullanımı”. Teknik Dergi, c. 33, sy. 6, 2022, ss. 12987-12, doi:10.18400/tekderg.986949.
Vancouver Duygu MB, Akyürek Z. Kozmik Işın Nötron Sayacı ile Ölçülen Toprak Neminin Hidrolojik Modellerde Kullanımı. Teknik Dergi. 2022;33(6):12987-3012.